ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houweling, Sander -- Badawy, Bakr -- Baker, David F -- Basu, Sourish -- Belikov, Dmitry -- Bergamaschi, Peter -- Bousquet, Philippe -- Broquet, Gregoire -- Butler, Tim -- Canadell, Josep G -- Chen, Jing -- Chevallier, Frederic -- Ciais, Philippe -- Collatz, G James -- Denning, Scott -- Engelen, Richard -- Enting, Ian G -- Fischer, Marc L -- Fraser, Annemarie -- Gerbig, Christoph -- Gloor, Manuel -- Jacobson, Andrew R -- Jones, Dylan B A -- Heimann, Martin -- Khalil, Aslam -- Kaminski, Thomas -- Kasibhatla, Prasad S -- Krakauer, Nir Y -- Krol, Maarten -- Maki, Takashi -- Maksyutov, Shamil -- Manning, Andrew -- Meesters, Antoon -- Miller, John B -- Palmer, Paul I -- Patra, Prabir -- Peters, Wouter -- Peylin, Philippe -- Poussi, Zegbeu -- Prather, Michael J -- Randerson, James T -- Rockmann, Thomas -- Rodenbeck, Christian -- Sarmiento, Jorge L -- Schimel, David S -- Scholze, Marko -- Schuh, Andrew -- Suntharalingam, Parv -- Takahashi, Taro -- Turnbull, Jocelyn -- Yurganov, Leonid -- Vermeulen, Alex -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1038-40. doi: 10.1126/science.337.6098.1038-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936755" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Carbon Dioxide/*analysis ; *Climate Change
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-29
    Description: Northern Eurasia is one of the largest terrestrial carbon reservoirs on the Earth’s surface. However, since the coverage of surface CO 2 observations is still limited, the response to the climate variability remains uncertain. We estimated monthly CO 2 fluxes for three sub-regions in Northern Eurasia (north of ∼60°N), Northeastern Europe, Western Siberia and Eastern Siberia, using CO 2 retrievals from the Japanese Greenhouse Gases Observing SATellite (GOSAT). The variations of estimated CO 2 fluxes were examined in terms of the regional climate variability, for the three consecutive growing seasons of 2009–2011. The CO 2 fluxes estimated using GOSAT data are highly correlated with the surface temperature anomalies in July and August ( r 〉 0.8) while no correlation is found in the CO 2 fluxes estimated only using surface observations. The estimated fluxes from GOSAT data exhibit high negative correlations with o...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-05
    Description: [1]  Being one of the largest carbon reservoirs in the world, the Siberian carbon sink however remains poorly understood due to the limited numbers of observation. We present the first results of atmospheric CO 2 inversions utilizing measurements from a Siberian tower network (Japan–Russia Siberian Tall Tower Inland Observation Network; JR-STATION) and four aircraft sites, in addition to surface background flask measurements by the National Oceanic and Atmospheric Administration (NOAA). Our inversion with only the NOAA data yielded a boreal Eurasian CO 2 flux of –0.56 ± 0.79 GtC yr -1 , whereas we obtained a weaker uptake of –0.35 ± 0.61 GtC yr -1 when the Siberian data were also included. This difference is mainly explained by a weakened summer uptake, especially in East Siberia. We also found the inclusion of the Siberian data had significant impacts on inversion results over northeastern Europe as well as boreal Eurasia. The inversion with the Siberian data reduced the regional uncertainty by 22 % on average in boreal Eurasia, and further uncertainty reductions up to 80 % were found in eastern and western Siberia. Larger interannual variability was clearly seen in the inversion which includes the Siberia data than the inversion without the Siberia data. In the inversion with NOAA plus Siberia data, East Siberia showed a larger interannual variability than that in West and Central Siberia. Finally, we conducted forward simulations using estimated fluxes and confirmed that the fit to independent measurements over Central Siberia, which were not included in inversions, was greatly improved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-12-19
    Description: A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. All but one model transports were driven by reanalysis products from 3 different meteorological agencies. The transport and removal of CH4 in six different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations (IAVs) and interhemispheric (IH) gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. An average IH exchange time of 1.39 ± 0.18 yr is derived from SF6 time series. Sensitivity simulations suggest that the estimated trends in exchange time, over the period of 1996–2007, are caused by a change of SF6 emissions towards the tropics. Using six sets of emission scenarios, we show that the decadal average CH4 growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. Up to 60% of the IAVs in the observed CH4 concentrations can be explained by accounting for the IAVs in emissions, from biomass burning and wetlands, as well as meteorology in the forward models. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus on the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little IAV due to transport and temperature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-12-22
    Description: Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006–2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-15
    Description: We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO2 and CH4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000–2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH4 and SF6, and ~1% for CO2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) and methane (XCH4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8–0.9 and 0.4–0.8 for XCO2 and XCH4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-01
    Description: A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES) global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-17
    Description: We present the application of a global carbon cycle modeling system to the estimation of monthly regional CO2 fluxes from the column-averaged mole fractions of CO2 (XCO2) retrieved from spectral observations made by the Greenhouse gases Observing SATellite (GOSAT). The regional flux estimates are to be publicly disseminated as the GOSAT Level 4 data product. The forward modeling components of the system include an atmospheric tracer transport model, an anthropogenic emissions inventory, a terrestrial biosphere exchange model, and an oceanic flux model. The atmospheric tracer transport was simulated using isentropic coordinates in the stratosphere and was tuned to reproduce the age of air. We used a fossil fuel emission inventory based on large point source data and observations of nighttime lights. The terrestrial biospheric model was optimized by fitting model parameters to observed atmospheric CO2 seasonal cycle, net primary production data, and a biomass distribution map. The oceanic surface pCO2 distribution was estimated with a 4-D variational data assimilation system based on reanalyzed ocean currents. Monthly CO2 fluxes of 64 sub-continental regions, between June 2009 and May 2010, were estimated from GOSAT FTS SWIR Level 2 XCO2 retrievals (ver. 02.00) gridded to 5° × 5° cells and averaged on a monthly basis and monthly-mean GLOBALVIEW-CO2 data. Our result indicated that adding the GOSAT XCO2 retrievals to the GLOBALVIEW data in the flux estimation brings changes to fluxes of tropics and other remote regions where the surface-based data are sparse. The uncertainties of these remote fluxes were reduced by as much as 60% through such addition. Optimized fluxes estimated for many of these regions, were brought closer to the prior fluxes by the addition of the GOSAT retrievals. In most of the regions and seasons considered here, the estimated fluxes fell within the range of natural flux variabilities estimated with the component models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-13
    Description: We present the application of an integrated global carbon cycle modeling system to the estimation of monthly regional CO2 fluxes from the column-averaged dry air mole fractions of CO2 (XCO2) retrieved from the spectral observations made by the Greenhouse gases Observing SATellite (GOSAT). The regional flux estimates are to be publicly disseminated as the GOSAT Level 4 data product. The forward modeling components of the system include an atmospheric tracer transport model, an anthropogenic emissions inventory, a terrestrial biosphere exchange model, and an oceanic flux model. The atmospheric tracer transport was simulated using isentropic coordinates in the stratosphere and was tuned to reproduce the age of air. We used a fossil fuel emission inventory based on large point source data and observations of nighttime lights. The terrestrial biospheric model was optimized by fitting model parameters to match observed atmospheric CO2 seasonal cycle, net primary production data, and a biomass distribution map. The oceanic surface pCO2 distribution was estimated with a 4-D variational data assimilation system based on reanalyzed ocean currents. Monthly CO2 fluxes of 64 sub-continental regions, between June 2009 and May 2010, were estimated from the GOSAT FTS SWIR Level 2 XCO2 retrievals (ver. 02.00) gridded to 5° × 5° cells and averaged on a monthly basis and monthly-mean GLOBALVIEW-CO2 surface-based observations. Our result indicated that adding the GOSAT XCO2 retrievals to the GLOBALVIEW observations in the flux estimation would bring changes to fluxes of tropics and other remote regions where the surface-based observations are sparse. The uncertainty of these remote fluxes was reduced by as much as 60% through such addition. For many of these regions, optimized fluxes are brought closer to the prior fluxes by the addition of GOSAT data. For the most of the regions and seasons considered here, the estimated fluxes fell within the range of natural flux variability estimated with the component models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-01
    Description: A transport model intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. The transport and removal of six CH4 tracers with different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations and interhemispheric gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. We find that the interhemispheric exchange rate (1.39 ± 0.18 yr) derived from SF6 is faster by about 11 % in the 2000s compared to the 1990s. Up to 60 % of the interannual variations in the forward CH4 simulations can be explained by accounting for the interannual variations in emissions from biomass burning and wetlands. We also show that the decadal average growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus to the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little interannual variability due to transport and temperature as noted by the ± 1 σ.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...