ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kraus, Scott D -- Brown, Moira W -- Caswell, Hal -- Clark, Christopher W -- Fujiwara, Masami -- Hamilton, Philip K -- Kenney, Robert D -- Knowlton, Amy R -- Landry, Scott -- Mayo, Charles A -- McLellan, William A -- Moore, Michael J -- Nowacek, Douglas P -- Pabst, D Ann -- Read, Andrew J -- Rolland, Rosalind M -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):561-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Edgerton Research Laboratory, New England Aquarium, Boston, MA 02110-3399, USA. skraus@neaq.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Ecology ; *Ecosystem ; Environment ; Female ; Fisheries ; Male ; Mortality ; Population Dynamics ; Population Growth ; Public Policy ; Reproduction ; Ships ; *Whales/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This study investigated how skin contributes to buoyancy control in the Florida manatee (Trichechus manatus latirostris), harbor porpoise (Phocoena phocoena), and bottlenose dolphin (Tursiops truncatus). Manatees are shallow divers and control their position in the water column hydrostatically. The two cetaceans are relatively deep divers that control their buoyancy hydrodynamically. Although the cetacean skin had been hypothesized to lower total body density (e. g., Dearolf et al. 2000, Nowacek et al. 2001), its buoyant force had not been calculated. The density of manatee skin, and its contribution to buoyancy, was unknown. Skin densities of 27 manatees, five harbor porpoises, and five bottlenose dolphins were measured volumetrically. Skin mass and density were used to calculate buoyant force. Harbor porpoise (952 kg/m3) and bottlenose dolphin (969 kg/m3) skins were less dense than seawater, and added 9 and 25 N of positive buoyant force, respectively, to total body buoyancy. By contrast, manatee skin (1,121 kg/m3) contributed 56 N of negative buoyant force, which equaled 70% of the negative buoyant force of their dense, pachyosteosclerotic ribs. Calculation of buoyant forces of the skeleton, skin and lungs demonstrates that the manatee is positively buoyant at the surface and negatively buoyant at depths of less than 10 m.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-136X
    Keywords: Thermoregulation ; Countercurrent heat exchange ; Testis ; Clinical assessment ; Dolphin, Tursiops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Dolphins possess a countercurrent heat exchanger that functions to cool their intra-abdominal testes. spermatic arteries in the posterior abdomen are juxtaposed to veins returning cooled blood from the surfaces of the dorsal fin and flukes. A rectal probe housing a linear array of five copper-constantan thermocouples was designed to measure colonic temperatures simultaneously at positions anterior to, within, and posterior to the region of the colon flanked by the countercurrent heat exchanger. Colonic temperatures adjacent to the countercurrent heat exchanger were maximally 1.3°C cooler than temperatures measured outside this region. Temporary heating and cooling of the dorsal fin and flukes affected temperatures at the countercurrent heat exchanger, but had little or no effect on temperatures posterior to its position. These measurements support the hypothesis that cooled blood is introduced into the deep abdominal cavity and functions specifically to regulate the temperature of arterial blood flow to the dolphin testes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-06
    Description: Several species of odontocete cetaceans depredate bait and catch and, as a result, become hooked and entangled in pelagic longline fisheries. The present study measured how selected commercial longline hooks, including "weak hooks", behaved within odontocete mouths. Five hooks (Mustad-16/0, Mustad-18/0, Mustad J-9/0, Korean 16, and Korean 18) were tested on three species of odontocetes known to interact with longline fisheries—short-finned pilot whales ( Globicephala macrorhynchus ), Risso's dolphins ( Grampus griseus ), and false killer whales ( Pseudorca crassidens ). Specimens were secured to a stanchion, hooks were placed in the mouth at multiple positions along the dorsal lip, and the force required to pull each hook free was measured. The soft tissue lips of these odontocetes were capable of resisting forces up to 250 kg before failing. The polished steel M-16, M-18, and J-9 hooks straightened at forces between 50 and 225 kg, depending on hook gauge. When straightened, these hooks exposed the sharpened barb, which sliced through the lip tissue, usually releasing the hook intact. The K-16 and K-18 hooks behaved very differently, breaking at higher forces (110–250 kg) and consistently just at the barb; usually, there was measurable soft-tissue loss and often shards of the hook were retained within those soft tissues. The different behaviours of these two hook types—the M and J type polished steel vs . the K type carbon steel—were consistent across all species tested. Mechanical tests were also conducted to determine if hooks could fracture the mandible of these same odontocetes. Only the M-18 and K-18 hooks had sufficiently large gapes to hook around the mandible, and both hook types fractured bone in short-finned pilot whales and Risso's dolphins. These results support other lines of evidence indicating that longline hooks can cause serious injury to these species, and suggest possible steps to mitigate these impacts.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...