ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 4816-4819 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The deposition of an intermediate buffer of praseodymium oxide (PrO2) of only monolayer thickness (about 2 A(ring)) in a two-temperature process results in the growth of almost exclusive epitaxial a-axis oriented YBa2Cu3O7 (YBCO) on LaAlO3 (100). Under identical experimental conditions, but without the monolayer of PrO2, epitaxial c-axis oriented YBCO films with a critical temperature Tc of 86 K and a transition width of 1 K are obtained. Critical temperatures of these a-axis oriented films are typically 10 K lower than those of the c-axis oriented films. Our findings suggest that a single layer of PrBa2Cu3O7 is formed at the interface, inducing a-axis growth throughout the whole YBCO film.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A low temperature process for laser dehydrogenation and crystallization of hydrogenated amorphous silicon (a-Si:H) has been developed. This process removes hydrogen by laser irradiations at three energy steps. Studies of hydrogen out-diffusion and microstructure show that hydrogen out-diffusion depends strongly on film structure and the laser energy density. Both high quality and low leakage bottom gate polycrystalline silicon and a-Si:H thin film transistors were monolithically fabricated on the same Corning 7059 glass substrate with a maximum process temperature of only 350 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 3194-3199 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Selective dehydrogenation and crystallization are realized by a three-step incremental increase in laser energy density. X-ray diffraction and transmission electron microscopy show that the polycrystalline grains formed with this three-step process are similar to those after a conventional one-step laser crystallization of unhydrogenated amorphous silicon. The grain size increases with increasing laser energy density up to a peak value of a few micrometers. The grain size decreases with further increases in laser energy density. The transistor field effect mobility is correlated to the material properties, increasing gradually with laser energy density until reaching its maximum value. Thereafter, the transistors suffer from leakage through the gate insulators. A dual dielectric gate insulator has been developed for these bottom-gate thin film transistors. Our structure simplifies fabrication of both high quality amorphous and polycrystalline thin film transistors on the same glass substrate. We discuss the application of this process for producing hybrid amorphous and polycrystalline silicon thin film transistors from hydrogenated amorphous silicon on glass substrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 53 (1988), S. 337-339 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Oriented c-axis thin films of Bi-Ca-Sr-Cu-O on [100] SrTiO3 substrates have been fabricated using the pulsed excimer laser evaporation technique. Deposition at room temperature in 1 mTorr oxygen followed by an 875 °C anneal in oxygen yields superconducting films with zero resistance at 80 K and a resistivity drop near 110 K, hinting at the presence of another superconducting phase. Transmission electron microscopy shows that the films are epitaxial with the substrate, with an abrupt and planar interface boundary. The observed crystal structure is consistent with diffraction results on bulk materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 66 (1989), S. 569-592 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on a detailed study of structural and electronic properties of hydrogenated amorphous silicon-germanium alloys deposited by rf glow discharge from SiH4 and GeH4 in a diode reactor. The chemical composition of the alloys is related to the deposition conditions, with special emphasis on preferential incorporation of Ge into the solid phase and on the role of inert dilutant gases. Hydrogen bonding in the alloys is investigated with nuclear magnetic resonance and vibrational (Raman and infrared) spectroscopy. The optical properties of a-SiGe:H samples deposited under optimal conditions are analyzed with the help of subgap absorption measurements and band-tail luminescence for the entire range of alloy composi-tions. A large part of the article describes an investigation of the electron-spin-resonance response of undoped alloys. The spin density associated with dangling bond defects localized on Si and Ge atoms has been measured as a function of alloy composition for optimized material. In addition, the dependence of the two defect densities on the detailed deposition conditions (rf power, substrate temperature, and dilution) has been determined in a systematic way for alloys deposited from a plasma with a fixed SiH4/GeH4ratio. The results of this study, especially the preferential creation of Ge dangling bonds, are discussed in the context of our structural data. Furthermore, spin resonance is employed to investigate the light-induced degradation (Staebler–Wronski effect) of a-SiGe:H. Finally, the changes of the spin-resonance spectra of a-Si0.7 Ge0.3 :H upon substitutional doping with phosphorus and boron have been obtained experimentally, and are used to construct a model for the electronic density of states in this material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3345-3355 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The factors determining the x-ray sensitivity of HgI2 and PbI2 as direct detector materials for large area matrix addressed x-ray image sensors are described, along with a model to explain their different properties. The imaging studies are made on test arrays with 512×512 pixels of size 100 μm. The x-ray sensitivity and spatial resolution are reported, along with measurements of the various mechanisms that influence the sensitivity, such as charge collection, x-ray absorption, fill factor, and image lag. The spatial resolution of PbI2 decreases with increasing film thickness, but this effect is not observed in HgI2. The x-ray response data are used to compare the sensitivity to the theoretical values for the ionization energy and to identify the various loss mechanisms. We find that the sensitivity of HgI2 can be explained by a few small and well characterized loss factors. This material exhibits good spatial resolution, high fill factor, and high charge collection. PbI2 films exhibit lower sensitivity, principally attributable to a very large image lag. We propose that the x-ray response of the two materials is distinguished by their different depletion layer properties, and present a model that accounts for the sensitivity, image lag, and spatial resolution of PbI2. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 2176-2182 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin films were deposited by pulsed uv-laser (ablation) deposition of Y1Ba2Cu3O7−x (YBCO), and composite zirconia and yttria targets onto silicon wafers. These films were analyzed to ascertain the chemical and physical structure of the film interfaces and further the development of Si substrates for superconducting YBCO films. Substrates were Si(100) with either a high-quality, thermal oxide (SiO2) film, or a spin-etch processed, oxide-free, hydrogen-terminated surface (Si:H). X-ray photoelectron spectroscopy (XPS) of Y, Ba, Cu, and Si core levels revealed adverse reactions for thin (nominally 2 nm) YBCO films deposited directly onto either substrate surface. The surfaces of thicker YBCO films (50–100 nm) and various oxide powders were compared with XPS results from these thin films. The thicker-film surfaces are similar to those of fractured bulk YBCO, while the thin YBCO films decomposed, as evidenced by changes in the Ba and Cu XPS. The Si XPS on these films showed the formation of metal-silicate compounds, even at deposition substrate temperatures of 550 °C, and silica (SiO2), especially for 670 °C deposition. A direct consequence of these reactions is that growth of high-quality epitaxial YBCO on Si will require the use of a buffer film. Yttria-stabilized zirconia (YSZ) shows considerable promise for use as a buffer, and XPS of thin films (4 and 8 nm thick) of ZrO2 on SiO2/Si and YSZ on Si:H substrates did not show any indication of decomposition, even at deposition temperatures near 800 °C. Transmission electron microscopy of cross-sectioned samples of YBCO/YSZ/Si showed that the lower YSZ interface is rough on the preoxidized (SiO2/Si) substrates but atomically sharp on the spin-etched Si wafers (Si:H). These sharp YSZ interfaces showed the presence of 3–5 nm of regrown oxide (SiOx ) next to the crystalline Si substrate. This regrown oxide was observed in samples deposited under a variety of conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 53 (1988), S. 1626-1628 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogen in undoped, unalloyed microcrystalline silicon (μc-Si:H) has been investigated with secondary-ion mass spectrometry (SIMS), Raman spectroscopy, infrared absorption spectroscopy, and nuclear magnetic resonance (NMR). The samples were grown by plasma-enhanced chemical vapor deposition with hydrogen to silane dilution ratios (H2:SiH4) ranging from 0:1 to 98:1. Microcrystallinity is obtained for dilution ratios of 20:1 and greater. The hydrogen concentration is shown to depend nonmonotonically on the degree of hydrogen dilution. The H concentration in the films decreases with dilution for ratios from 0:1 to 10:1 and then increases with greater dilution. This dependence on dilution is established with both NMR and SIMS and suggests the existence of competing processes in the incorporation of hydrogen during deposition. It is further observed that the formation of microcrystallites is accompanied by the appearance of both higher order silicon hydrides and large concentrations of unbound molecular hydrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 57 (1990), S. 2222-2224 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electronic transport properties and structural morphology of fast-pulse excimer-laser- crystallized hydrogenated amorphous silicon (a-Si:H) thin films have been measured. The room-temperature dark dc conductivities and Hall mobilities increase by several orders of magnitude at well-defined laser energy density thresholds which decrease as the impurity concentration in the films increases. The structural morphology of the films suggests an impurity-induced reduction of the a-Si:H melt temperature as the origin of this behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 2138-2140 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: During short-pulse laser crystallization of amorphous silicon on quartz, surface roughening occurs via the freezing of capillary waves excited in the silicon melt. The velocity and viscous damping of these capillary waves is computed and discussed. Volume change of the silicon during solidification appears to drive liquid silicon toward the last areas of solidification. Film thickness variation observed by transmission electron microscopy and atomic force microscopy shows increased film thickness at grain boundaries, and vertices of single pulse irradiated films. This effect is most pronounced within a narrow laser fluence regime wherein large lateral grain growth occurs. For 100 nm thick amorphous silicon films on quartz, this regime extends from approximately 520 to 560 mJ/cm2; standard deviation roughness can be as large as 40 nm. These effects have important implications for large area thin film transistor manufacturing. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...