ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02026, doi:10.1029/2007JG000470.
    Description: Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
    Description: The results presented in this report are based upon work supported by the U.S. National Science Foundation under grants to the Arctic Hyporheic project (OPP- 0327440) and the Arctic Long-Term Ecological Research Program (DEB- 9810222).
    Keywords: Arctic ; Climate change ; Streams ; Ecosystem dynamics ; Sediment ; Thermokarst ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 11 (2016): 034014, doi:10.1088/1748-9326/11/3/034014.
    Description: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
    Description: This work was supported by the National Science Foundation ARCSS program and Vulnerability of Permafrost Carbon Research Coordination Network (grants OPP-0806465, OPP-0806394, and 955713) with additional funding from SITES (Swedish Science Foundation), Future Forest (Mistra), and a Marie Curie International Reintegration Grant (TOMCAR-Permafrost #277059) within the 7th European Community Framework Programme.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Lakes and streams in the foothills near Tookik Lake, Alaska, at 68°N have been studied since 1975 to predict physical, chemical and biological impacts of future global change. Experimental manipulations include whole lake and continuous stream fertilization as well as removal and addition of predators (copepods, lake trout, grayling, sculpin). Based on our evidence the following scenario is likely. Warming thaws the upper layers of permafrost and streams and lakes become enriched with phosphorus. Streams respond quickly with higher production of diatoms but animal grazers keep biomass changes to a minimum. Fish productivity also increases. If phosphorus levels are too high, mosses become the dominant primary producer and sequester all of the nutrients. Growth of Arctic grayling under the present conditions only occurs in summers with higher than average stream flow. The present population would be stressed by warmer temperatures. When higher phosphorus levels reach lakes and cause slight europhication, the number of trophic levels will increase, especially within the microbial food web. Warmer lake temperatures increase stratification and, combined with eutrophication, could decrease oxygen in the hypolimnion. Oxygen levels will also decrease in winter under the ice cover. Eventually this habitat change will eliminate the lake trout, a top predator. Removal of lake trout results in a striking increase in abundance and productivity of smaller fish, including small lake trout, and the emergence of burbot as an alternate top predator. Large species of zooplankton will become virtually extinct.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 32 (1994), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Each year since 1983, H3PO4 has been added continuously during the ice-free season to a P-limited tundra river (Kuparuk River, North Slope, Alaska). Effects on epilithic metabolism, invertebrate community structure and fish production developed quickly.2. In 1990, 7 years after fertilization began, we noted extensive coverage by bryophytes within the fertilized reach of the river, where very little had been noted before. Bryophyte biomass from a limited set of quadrats taken in 1990 and 1991 yielded 17 ± 9 (SE) g dry mass m−2 in control reaches and 322 ± 96 g dry mass m−2 in fertilized reaches.3. An initial survey of macroalgal and bryophyte cover in 1991 suggested that the moss Schistidium (Grimmia) agassizii was distributed in both control and fertilized reaches of the river. No clear difference in coverage by this species was found in either reach.4. In contrast, two species of Hygrohypnum (H. alpestre and H. ochraceum) were found almost exclusively in the fertilized reach. An extensive point transect survey done in 1992, above, within and below the fertilized reach, indicated that increased cover and biomass of Hygrohypnum spp. were confined to the fertilized reach of the river. Detrended correspondence analysis clearly separated the macrophyte and macroalgal communities in the fertilized reach from those in the control and downstream reaches.5. A fourth bryophyte species (Fontinalis neomexicana) also occurred almost exclusively in the fertilized reach, but was much less abundant than the Hygrohypnum species.6. Analysis of total N and P in the tissues of the Hygrohypnum spp., and estimates of average coverage (∼15%) and biomass (∼150g dry weight m−2) over an 8km fertilized reach, suggest that these species alone may have removed two-thirds of the P added in the fertilizer experiment. The bryophyte community in this river is likely to be the dominant sink for P in the fertilized reach.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 32 (1994), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Two bryophyte taxa (Hygrohypnum spp. and, to a lesser extent, Fontinalis neomexicana) were abundant in riffles within phosphorus-fertilized reaches of the Kuparuk River (North Slope, Alaska), but were much less common in fertilized pools and virtually absent in unfertilized reaches of the river. We conducted field experiments using stems and clumps of both species and artificial bryophytes to test the hypotheses that bryophyte growth was strongly limited by low phosphorus concentrations in unfertilized reaches, and limited by epiphytes in fertilized pools.2. Stem tips of Hygrohypnum spp. did not elongate when grown in unfertilized pool and riffle environments. In fertilized reaches, Hygrohypnum elongated significantly, although there was no significant difference in elongation of stem tips placed in pools [2.5 ± 0.9 cm (SD)] as opposed to riffles (2.8 ± 0.9 cm) for 32 days.3. Stem tips of F. neomexicana elongated significantly in all sites. There was a significant difference in elongation of stem tips in control and fertilized riffles (2.1 ± 1.1 and 4.7 ± 0.1 cm, respectively) but not in tips grown in control and fertilized pools (2.8 ± 0.8 and 2.7 ± 0.9 cm, respectively).4. Biomass increments in clumps of these same species followed similar patterns except in fertilized pools. Hygrohypnum spp. lost weight in control riffle environments and did not grow in pools, but accumulated 181 ± 44 and 335 ± 200% of initial biomass in fertilized riffles in 1992 (over 32 days) and 1993 (over 44 days), respectively. F. neomexicana accumulated 38 ± 39 and 98 ± 47% of initial biomass in 1992 in unfertilized and fertilized riffles, respectively. Total phosphorus concentrations of both bryophytes in 1992 were significantly greater when grown in fertilized riffles than control riffles.5. Artificial mosses (untwisted, natural fibre rope) and clumps of Hygrohypnum spp. were used to assess effects of flow regime on derrital and epiphyte accumulation in the fertilized zone. Epiphyte and detrital mass was 4–4.5 times greater on average on artificial mosses in slow-flowing pool environments than in fast-flowing riffle environments. Epiphyte chlorophyll a was 4 times greater on Hygrohypnum clumps in pools than in riffles. This difference was probably brought about by increased detrital deposition and reduced grazing by invertebrates in pools. It is likely that both Hygrohypnum spp. and F. neomexicana could grow throughout the river, but are limited strongly by low phosphorus concentrations in unfertilized reaches and secondarily by detritus accumulation and interference competition with epiphytic algae in fertilized pools.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Oligotrophic Arctic streams are likely to be sensitive to changes in hydrology and nutrient inputs predicted to occur as a consequence of future climate and land use change. To investigate the potential consequences of nutrient enrichment for low-order Arctic streams, we added ammonium-N and phosphorous to a second-order beaded, tundra stream on Alaska's north slope. We measured responses in nutrient chemistry, chlorophyll a standing crop, and in the breakdown and macroinvertebrate colonisation of leaf litter over a 38-day summer period.2. During the addition, nutrient concentrations immediately downstream of the dripper averaged 6.4 μm ammonium-N and 0.45 μm soluble reactive P. Concentrations upstream of the dripper averaged 0.54 μm ammonium-N and 0.03 μm soluble reactive P. Uptake of both nutrients was rapid. Concentrations were reduced on average to 28% (ammonium-N) and 15% (inorganic P) of maximum values within 1500 m. Standing crops of chlorophyll a on standardised samplers were significantly higher by the end of the experiment. Breakdown rates of senescent willow (Salix sp.) and sedge (Carex sp.) litter and associated fungal biomass were also significantly increased by nutrient addition.3. Fertilisation resulted in four- to sevenfold higher macroinvertebrate abundance and two- to fourfold higher macroinvertebrate biomass in litter bags, as well as an increase in late-summer body mass of larval Nemoura stoneflies.4. Our results are consistent with those of similar studies of larger streams in the high-Arctic region. Based on our short-term experiment, increased inputs of nutrients into these ecosystems, whether caused by climate change or more local disturbance, are likely to have profound ecological consequences. Longer-term effects of enrichment, and their interaction with other components of future change in climate or land use, are more difficult to assess.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The Lotic Intersite Nitrogen eXperiment (LINX) was a coordinated study of the relationships between North American biomes and factors governing ammonium uptake in streams. Our objective was to relate inter-biome variability of ammonium uptake to physical, chemical and biological processes.2. Data were collected from 11 streams ranging from arctic to tropical and from desert to rainforest. Measurements at each site included physical, hydraulic and chemical characteristics, biological parameters, whole-stream metabolism and ammonium uptake. Ammonium uptake was measured by injection of 15N-ammonium and downstream measurements of 15N-ammonium concentration.3. We found no general, statistically significant relationships that explained the variability in ammonium uptake among sites. However, this approach does not account for the multiple mechanisms of ammonium uptake in streams. When we estimated biological demand for inorganic nitrogen based on our measurements of in-stream metabolism, we found good correspondence between calculated nitrogen demand and measured assimilative nitrogen uptake.4. Nitrogen uptake varied little among sites, reflecting metabolic compensation in streams in a variety of distinctly different biomes (autotrophic production is high where allochthonous inputs are relatively low and vice versa).5. Both autotrophic and heterotrophic metabolism require nitrogen and these biotic processes dominate inorganic nitrogen retention in streams. Factors that affect the relative balance of autotrophic and heterotrophic metabolism indirectly control inorganic nitrogen uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-515X
    Keywords: ammonium ; dissolved organic nitrogen ; groundwater chemistry ; nitrate ; riparian zone ; tropical rain forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 −-N) were low in stream water (〈 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 −-N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 − were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-515X
    Keywords: ammonia volatilization ; nitrification ; denitrification ; chemodenitrification ; nitrogen cycling ; atmospheric chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract There is increasing interest in the importance of nitrogen gas emissions from natural (non-agricultural) ecosystems with respect to local as well as global nitrogen budgets and with respect to the effects of nitrogen oxides on atmospheric ozone levels and global warming. The volatile forms of nitrogen of common interest are ammonia (NH3), nitrous oxide, (N2O), dinitrogen (N2), and NOx (principally NO + NO2). It is often difficult to attribute emissions of these compounds from soils to a single process because they are produced by a variety of common biogeochemical mechanisms. Although environmental conditions in the soil often appear to favor nitrogen gas emissions, the potential nitrogen gas emission rate from undisturbed ecosystems is rarely approached. The best estimates to date suggest that nitrogen gas emission rates from undisturbed ecosystems typically range from 〉 1 to perhaps 10 or 20 kg N ha-1 yr-1. Under certain conditions, however, emission rates may be much higher. For example, excreta from animals in grasslands may elevate ammonia volatilization up to 100 kg N ha-1 yr-1 depending on grazer density; tidal input of nutrients to coastal wetlands may support denitrification rates of several hundred kg N ha-1 yr-1 . Excepting such cases, gaseous nitrogen losses are probably a small component of the local nitrogen budget in most undisturbed ecosystems. However, emissions from undisturbed soils are an important component of the global source strengths for (N2O + N2), N2O and NOx (50%, 21%, and 10% respectively). Emission rates of N2O from natural ecosystems are higher than assumed previously by perhaps 10 times. Large-scale disturbance may have a stimulatory effect on nitrogen emission rates which could have important effects on global nitrogen budgets. There is a need for more sophisticated methods to account for natural temporal and spatial variations of emissions rates, to more accurately and precisely assess their global source strengths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...