ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Global warming is predicted to be most pronounced at high latitudes, and observational evidence over the past 25 years suggests that this warming is already under way. One-third of the global soil carbon pool is stored in northern latitudes, so there is considerable interest in understanding ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © 2008 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License 2.5. The definitive version was published in Journal of Ecology 96 (2008): 713-726, doi:10.1111/j.1365-2745.2008.01378.x.
    Description: Plant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning. After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL. Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass. Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability. In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed. Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition.
    Description: This work was supported by NSF grants DEB-0213130, DEB-0516509, OPP-0623364, DEB-981022 and DEB-0423385, and by the Inter-American Institute for Global Change Research (IAI) CRN 2015 which is supported by the US National Science Foundation (GEO-0452325). Open access to this publication was partially supported by the Berkeley Research Impact Initiative Program.
    Keywords: Arctic tundra ; Biodiversity ; Biomass compensation ; Nitrogen ; Plant functional types ; Productivity ; Species interactions ; Species removal ; Soil nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Philosophical Transactions of the Royal Society B Biological Sciences 368 (2013): 20120490, doi:10.1098/rstb.2012.0490.
    Description: Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.
    Description: This work was supported by NSF (no. OPP-0632264) and NSF (no. OPP-1107892) to M. S. Bret-Harte, NSF (no. OPP-0856853) to G. R. Shaver and NSF (no. OPP-6737545) to M. C. Mack.
    Keywords: Alaskan tussock tundra ; Fire ; Vegetation recovery ; Permafrost ; Climate change ; Soil N availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranty, Michael M.; Davydov, Sergey P.; Kropp, Heather; Alexander, Heather D.; Mack, Michelle C.; Natali, Susan M.; Zimov, Nikita S. 2018. "Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests." Remote Sens. 10, no. 11: 1686, doi:10.3390/rs10111686.
    Description: Boreal forests are changing in response to climate, with potentially important feedbacks to regional and global climate through altered carbon cycle and albedo dynamics. These feedback processes will be affected by vegetation changes, and feedback strengths will largely rely on the spatial extent and timing of vegetation change. Satellite remote sensing is widely used to monitor vegetation dynamics, and vegetation indices (VIs) are frequently used to characterize spatial and temporal trends in vegetation productivity. In this study we combine field observations of larch forest cover across a 25 km2 upland landscape in northeastern Siberia with high-resolution satellite observations to determine how the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are related to forest cover. Across 46 forest stands ranging from 0% to 90% larch canopy cover, we find either no change, or declines in NDVI and EVI derived from PlanetScope CubeSat and Landsat data with increasing forest cover. In conjunction with field observations of NDVI, these results indicate that understory vegetation likely exerts a strong influence on vegetation indices in these ecosystems. This suggests that positive decadal trends in NDVI in Siberian larch forests may correspond primarily to increases in understory productivity, or even to declines in forest cover. Consequently, positive NDVI trends may be associated with declines in terrestrial carbon storage and increases in albedo, rather than increases in carbon storage and decreases in albedo that are commonly assumed. Moreover, it is also likely that important ecological changes such as large changes in forest density or variable forest regrowth after fire are not captured by long-term NDVI trends.
    Description: We thank numerous undergraduate and graduate research assistants, and Polaris Project participants for field and lab assistance. We thank the staff and scientists at the Northeast Science Station for logistical and field support. Lastly, we thank the editors and six anonymous reviewers whose comments helped to improve this paper.
    Keywords: Boreal forest ; NDVI ; Phenology ; Greening ; Arctic ; Siberia ; Larch ; CubeSat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 5 (2014): art72, doi:10.1890/ES13-00281.1.
    Description: Warming Arctic temperatures can drive changes in vegetation structure and function directly by stimulating plant growth or indirectly by stimulating microbial decomposition of organic matter and releasing more nutrients for plant uptake and growth. The arctic biome is currently increasing in deciduous shrub cover and this increase is expected to continue with climate warming. However, little is known how current deciduous shrub communities will respond to future climate induced warming and nutrient increase. We examined the plant and ecosystem response to a long-term (18 years) nutrient addition and warming experiment in an Alaskan arctic tall deciduous shrub tundra ecosystem to understand controls over plant productivity and carbon (C) and nitrogen (N) storage in shrub tundra ecosystems. In addition, we used a meta-analysis approach to compare the treatment effect size for aboveground biomass among seven long-term studies conducted across multiple plant community types within the Arctic. We found that biomass, productivity, and aboveground N pools increased with nutrient additions and warming, while species diversity decreased. Both nutrient additions and warming caused the dominant functional group, deciduous shrubs, to increase biomass and proportional C and N allocation to aboveground stems but decreased allocation to belowground stems. For all response variables except soil C and N pools, effects of nutrients plus warming were largest. Soil C and N pools were highly variable and we could not detect any response to the treatments. The biomass response to warming and fertilization in tall deciduous shrub tundra was greater than moist acidic and moist non-acidic tundra and more similar to the biomass response of wet sedge tundra. Our data suggest that in a warmer and more nutrient-rich Arctic, tall deciduous shrub tundra will have greater total deciduous shrub biomass and a higher proportion of woody tissue that has a longer residence time, with a lower proportion of C and N allocated to belowground stems.
    Description: This research was supported by NSF grants DEB-0516041, DEB-0516509 and the Arctic LTER (DEB-0423385).
    Keywords: Arctic ; Carbon pools ; Climate change ; Deciduous shrubs ; Manipulated warming ; Meta-analysis ; Nitrogen pools ; Nutrient additions ; Tundra
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 19 (2016): 387-395, doi:10.1007/s10021-015-9934-1.
    Description: Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.
    Description: This material is based upon work supported by the National Science Foundation under Grant No. DEB-1145815 and 0949420.
    Description: 2016-11-18
    Keywords: Disturbance ; Fire regime ; Succession ; Multiple Element Limitation (MEL) model ; Nitrogen stocks ; Nutrient ratio
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © IOP Publishing, 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 7 (2012): 044039, doi:10.1088/1748-9326/7/4/044039.
    Description: Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (〉10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.
    Description: This work was supported by NSF grants #1065587 to the Marine Biological Laboratory, Woods Hole.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 11 (2016): 034014, doi:10.1088/1748-9326/11/3/034014.
    Description: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
    Description: This work was supported by the National Science Foundation ARCSS program and Vulnerability of Permafrost Carbon Research Coordination Network (grants OPP-0806465, OPP-0806394, and 955713) with additional funding from SITES (Swedish Science Foundation), Future Forest (Mistra), and a Marie Curie International Reintegration Grant (TOMCAR-Permafrost #277059) within the 7th European Community Framework Programme.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...