ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1009
    Keywords: Watersheds ; Budgets ; Nitrogen ; Phosphorus ; Channelization ; Swamps ; Floodplain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Nitrogen and phosphorus exports from channelizedstream watersheds were elevated over those from nearby natural swamp-stream watersheds. Nitrate exports were significantly greater from channelized-stream watersheds, and higher exports were attributed to faster groundwater drawdown, continual streamflow, and transformation of former floodplain to croplands following channelization. Exports of total organic nitrogen and total nitrogen were also significantly greater from channelized-stream watersheds. Differences in the exports of ammonium, filterable reactive phosphorus, and filterable unreactive phosphorus between the two watershed types were not detectable. Particulate phosphorus exports were significantly higher from channelized-stream watersheds, presumably because of greater erosion potential of nearby croplands and steep channel banks in the altered watersheds. The presence of nonpoint sources of pollution increased watershed exports of nutrients regardless of stream morphology. Examination of nutrient budgets for a portion of swamp floodplain at the base of one natural-stream watershed revealed that changes in local groundwater hydrology and stream morphology associated with channelization appeared to have greater effect on nutrient exports than simply the loss of bordering forested floodplain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 35 (1999), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The Lotic Intersite Nitrogen eXperiment (LINX) was a coordinated study of the relationships between North American biomes and factors governing ammonium uptake in streams. Our objective was to relate inter-biome variability of ammonium uptake to physical, chemical and biological processes.2. Data were collected from 11 streams ranging from arctic to tropical and from desert to rainforest. Measurements at each site included physical, hydraulic and chemical characteristics, biological parameters, whole-stream metabolism and ammonium uptake. Ammonium uptake was measured by injection of 15N-ammonium and downstream measurements of 15N-ammonium concentration.3. We found no general, statistically significant relationships that explained the variability in ammonium uptake among sites. However, this approach does not account for the multiple mechanisms of ammonium uptake in streams. When we estimated biological demand for inorganic nitrogen based on our measurements of in-stream metabolism, we found good correspondence between calculated nitrogen demand and measured assimilative nitrogen uptake.4. Nitrogen uptake varied little among sites, reflecting metabolic compensation in streams in a variety of distinctly different biomes (autotrophic production is high where allochthonous inputs are relatively low and vice versa).5. Both autotrophic and heterotrophic metabolism require nitrogen and these biotic processes dominate inorganic nitrogen retention in streams. Factors that affect the relative balance of autotrophic and heterotrophic metabolism indirectly control inorganic nitrogen uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1435-0629
    Keywords: Key words: carbon dioxide; ecosystem metabolism; organic matter decomposition; trace gas evasion; catchment scale; Tennessee.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT The concentration of CO2 in stream water is a product of not only instream metabolism but also upland, riparian, and groundwater processes and as such can provide an integrative measure of whole catchment soil respiration. Using a 5-year dataset of pH, alkalinity, Ca2+, and Mg2+ in surface water of the West Fork of Walker Branch in eastern Tennessee in conjunction with a hydrological flowpath chemistry model, we investigated how CO2 concentrations and respiration rates in stream, bedrock, and soil environments vary seasonally and interannually. Dissolved inorganic carbon concentration was highest in summer and autumn (P 〈 0.05) although the proportion as free CO2 (pCO2) did not vary seasonally (P 〉 0.05). Over the 5 years, pCO2 was always supersaturated with respect to the atmosphere ranging from 374 to 3626 ppmv (1.0- to 10.1-fold greater than atmospheric equilibrium), and CO2 evasion from the stream to the atmosphere ranged from 146 to 353 mmol m−2 d−1. Whereas pCO2 in surface water exhibited little intra-annual or interannual variation, distinct seasonal patterns in soil and bedrock pCO2 were revealed by the catchment CO2 model. Seasonally, soil pCO2 increased from a winter low of 8167 ppmv to a summer high of 27,068 ppmv. Driven by the seasonal variation in gas levels, evasion of CO2 from soils to the atmosphere ranged from 83 mmol m−2 d−1 in winter to 287 mmol m−2 d−1 in summer. The seasonal variation in soil CO2 tracked soil temperature (r 2= 0.46, P 〈 0.001) and model-derived estimates of CO2 evasion rate from soils agreed with previously reported fluxes measured using chambers (Pearson correlation coefficient = 0.62, P 〈 0.05) supporting the model assumptions. Although rates of CO2 evasion were similar between the stream and soils, the overall rate of evasion from the channel was only 0.4% of the 70,752 mol/d that evaded from soils due to the vastly different areas of the two subsystems. Our model provides a means to assess whole catchment CO2 dynamics from easily collected and measured stream-water samples and an approach to study catchment scale variation in soil ecosystem respiration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of grazing on primary productivity and phosphorus cycling in autotrophic streams was studied using the snail Goniobasis clavaeformes. Snails were added to each of three replicate laboratory stream channels, receiving once-through flow of groundwater, in densities of 2.1, 3.0, and 4.2 g ash free dry mass (AFDM)/m2. A fourth channel received no snails and served as an ungrazed control. Presence of snail grazers resulted in a large reduction in aufwuchs biomass, primary productivity, and biotic phosphorus uptake; a modest reduction in fine particulate organic matter (FPOM); and an increase in the fraction of stream particulate organic matter (POM) exported as seston. Although primary production and aufwuchs biomass continued to decline with increasing snail density, phosphorus uptake increased. This increased phosphorus uptake is attributed to abiotic sorption to inorganic surfaces exposed as a result of efficient removal of aufwuchs at high snail densities. Although snail densities were chosen to bracket the density measured in a natural stream, the experimental densities may result in considerably higher grazing pressure on aufwuchs due to the absence of alternate food sources (e.g., coarse particulate organic matter) usually found in natural streams. Presence of snail grazers increased the spiralling length of phosphorus, primarily by reducing aufwuchs biomass and consequently reducing uptake of phosphorus from the water. Presence of snails also increased downstream transport velocity of phosphorus bound to organic particles. These results follow the patterns predicted in a previous theoretical analysis for mildly phosphorus-limited streams.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: carbon dioxide ; eastern Tennessee ; ecosystem metabolism ; methane ; streams ; Smoky Mountains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The partial pressures of CO2 (pCO2) andCH4 (pCH4) in streams are not only governed byinstream processes, but also by transformations occurring in soil andgroundwater ecosystems. As such, stream water pCO2 andpCH4 can provide a tool to assess ecosystem respiration andanaerobic metabolism throughout drainage basins. We conducted three surveyssampling the gas content of streams in eastern Tennessee and western NorthCarolina to assess factors regulating ecosystem metabolism in catchmentswith contrasting geomorphologies, elevations and soil organic matterstorage. In our first survey, the influence of drainage basin geomorphologyon ecosystem respiration was examined by sampling streams drainingcatchments underlain by either shale or dolomite. Geomorphology isinfluenced by geology with shale catchments having shallower soils, broader,unconstrained valley floors compared with dolomite catchments.pCO2 varied little between catchment types but increased froman average of 3340 ppmv in spring to 9927 ppmv in summer or 9.3 and 28 timesatmospheric equilibrium (pCO2(equilib)), respectively. Incontrast, pCH4 was over twice as high in streams drainingshale catchments (306 ppmv; pCH4(equilib) = 116) compared withmore steeply incised dolomite basins (130 ppmv; pCH4(equilib)= 51). Using the ratio of pCH4:pCO2 as an indexof anaerobic metabolism, shale catchments had nearly twice as muchanaerobiosis (pCH4:pCO2 = 0.046) than dolomitedrainages (pCH4:pCO2 = 0.024). In our secondsurvey, streams were sampled along an elevational gradient (525 to 1700 m)in the Great Smoky Mountains National Park, USA where soil organic matterstorage increases with elevation. pCO2 did not vary betweenstreams but increased from 5340 ppmv (pCO2(equilib) = 15) to8565 ppmv (pCO2(equilib) = 24) from spring to summer,respectively. During spring pCH4 was low and constant acrossstreams, but during summer increased with elevation ranging from 17 to 2068ppmv (pCH4(equilib) = 10 to 1216). The contribution ofanaerobiosis to total respiration was constant during spring(pCH4:pCO2 = 0.017) but during summer increasedwith elevation from 0.002 at 524 m to 0.289 at 1286 m. In our last survey,we examined how pCO2 and pCH4 changed withcatchment size along two rivers (ca. 60 km stretches in both riverscorresponding to increases in basin size from 1.7–477km2 and 2.5–275 km2). pCO2and pCH4 showed opposite trends, with pCO2decreasing ca. 50% along the rivers, whereas pCH4roughly doubled in concentration downstream. These opposing shifts resultedin a nearly five-fold increase of pCH4:pCO2along the rivers from a low of 0.012 in headwaters to a high of 0.266 65-kmdownstream. pCO2 likely declines moving downstream asgroundwater influences on stream chemistry decreases, whereaspCH4 may increase as the prevalence of anoxia in riversexpands due to finer-grained sediments and reduced hydrologic exchange withoxygenated surface water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5117
    Keywords: stream acidification ; aluminum ; bacteria ; macroinvertebrates ; fish ; leaf decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A comparative study of relationships between stream acidity and bacteria, macroinvertebrates, and fish in the Adirondack Mountains of upper New York state and in the Southern Blue Ridge Mountains of eastern Tennessee, USA, was conducted. Although the study sites in both regions spanned a pH range from approximately 4.5 to 6.4, considerably greater seasonal variability in pH and higher monomeric Al concentrations characterized the Adirondack sites. Relationships between several biological characteristics and stream water acidity were similar in both regions, including lower production of epilithic bacteria and bacteria on decomposing leaves, lower leaf decomposition rates, lower density and generic richness of scraper/grazer macroinvertebrates, particularly Ephemeroptera, and lower fish abundance and survival in more acidic streams. Densities of total macroinvertebrates and densities of macroinvertebrates and bacteria inhabiting or closely associated with stream sediments were generally not related to stream water acidity. Regional differences occur in some of the relationships between biological characteristics and stream water acidity. Negative correlations between bacterial production on rocks and pH, between bacterial production on decomposing leaves and pH, and between densities of Ephemeroptera and scrapers and pH were stronger in the Adirondacks than in the Southern Blue Ridge. Higher Al concentrations in the Adirondacks may be responsible for the stronger relationships with pH there. The steeper slopes of the relationships between Ephemeroptera density and all forms of Al in the Adirondacks compared with the Southern Blue Ridge suggests that there may be some adaptation among a few acid/aluminum-tolerant species in the seasonally more constant acidic Southern Blue Ridge streams. Fish bioassays indicated longer survival times in acidic streams in the Adirondacks compared with the Southern Blue Ridge, but these results may be an artifact associated with the use in the Southern Blue Ridge of rainbow trout as the test species which is known to be more acid sensitive compared with brook trout, the test species used in the Adirondacks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 58 (2013): 1271-1285, doi:10.4319/lo.2013.58.4.1271.
    Description: Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate () tracer additions in 36 headwater streams, a subset of sites from the second Lotic Intersite Nitrogen eXperiment. Streams were located in five North American ecoregions and drained basins dominated by native vegetation, agriculture, or urban land use. Using a two-compartment model, we could quantify DON production in 15 streams as a function of DO15N derived from 15N tracer in biomass compartments. The streams with detectable DON production had higher % modified land use (agriculture + urban) in their basins than did streams with undetectable DON production. Median DON production represented 8% of total uptake when we used N biomass estimates based on N assimilated over 1 d (measured directly from the 15N additions). Median DON production was 17% of total uptake when we used N assimilated over 42 d (extrapolated from previous 15N tracer studies). Variation in DON production was positively correlated with ecosystem respiration, indicating that stream heterotrophy may influence DON production. In-stream DON production was similar in magnitude to stream denitrification and nitrification, indicating that the production of autochthonous DON can represent a substantial transformation of stream N. Our results confirm that headwater streams can quickly convert inorganic N into organic forms, although the ultimate fate of DON remains unclear.
    Description: This work was supported by a grant from the National Science Foundation Division of Environmental Biology (NSF DEB-0111410), and L. Johnson was partially supported by fellowships from the Center for Aquatic Conservation at the University of Notre Dame and the Bayer Corporation while preparing this manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 452 (2008): 202-205, doi:10.1038/nature06686.
    Description: Worldwide, anthropogenic addition of bioavailable nitrogen (N) to the biosphere is increasing and terrestrial ecosystems are becoming increasingly N saturated, causing more bioavailable N to enter groundwater and surface waters. Large-scale N budgets show that an average of about 20-25% of the N added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for N must exist in the landscape. Streams and rivers may be important sinks for bioavailable N owing to their hydrologic connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favor microbial denitrification. Here, using data from 15N tracer experiments replicated across 72 streams and 8 regions representing several biomes, we show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of instream nitrate that is removed from transport. Total uptake of nitrate was related to ecosystem photosynthesis and denitrification was related to ecosystem respiration. Additionally, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.
    Description: Funding for this research was provided by the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...