ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-07
    Description: Significant predictive skill for the mean winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) has been recently reported for a number of different seasonal forecasting systems. These findings are important in exploring the predictability of the natural system, but they are also important from a socioeconomic point of view, since the ability to predict the wintertime atmospheric circulation anomalies over the North Atlantic well ahead in time will have significant benefits for North American and European countries. In contrast to the tropics, for the mid latitudes the predictive skill of many forecasting systems at the seasonal time scale has been shown to be low to moderate. The recent findings are promising in this regard, suggesting that better forecasts are possible, provided that key components of the climate system are initialized realistically and the coupled models are able to simulate adequately the dominant processes and teleconnections associated with low-frequency variability. It is shown that a multisystem approach has unprecedented high predictive skill for the NAO and AO, probably largely due to increasing the ensemble size and partly due to increasing model diversity. Predicting successfully the winter mean NAO does not ensure that the respective climate anomalies are also well predicted. The NAO has a strong impact on Europe and North America, yet it only explains part of the interannual and low-frequency variability over these areas. Here it is shown with a number of different diagnostics that the high predictive skill for the NAO/AO indeed translates to more accurate predictions of temperature, surface pressure, and precipitation in the areas of influence of this teleconnection.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-19
    Print ISSN: 0143-0807
    Electronic ISSN: 1361-6404
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2009-07-01
    Description: The contributions of different time scales to extratropical teleconnections are examined. By applying empirical orthogonal functions and correlation analyses to reanalysis data, it is shown that eddies with periods shorter than 10 days have no linear contribution to teleconnectivity. Instead, synoptic variability follows wavelike patterns along the storm tracks, interpreted as propagating baroclinic disturbances. In agreement with preceding studies, it is found that teleconnections such as the North Atlantic Oscillation (NAO) and the Pacific–North America (PNA) pattern occur only at low frequencies, typically for periods more than 20 days. Low-frequency potential vorticity variability is shown to follow patterns analogous to known teleconnections but with shapes that differ considerably from them. It is concluded that the role, if any, of synoptic eddies in determining and forcing teleconnections needs to be sought in nonlinear interactions with the slower transients. The present results demonstrate that daily variability of teleconnection indices cannot be interpreted in terms of the teleconnection patterns, only the slow part of the variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-10
    Description: Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes. The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns. Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-10-01
    Description: The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient structure the prescribed heating induces a mean temperature anomaly proportional to the spatial Hilbert transform of the heating. The interior potential vorticity generated by the heating enhances this surface response. The time-varying part is independent of the heating and satisfies the usual linearized surface quasigeostrophic dynamics. It is shown that the surface temperature tendency is a spatial Hilbert transform of the temperature anomaly itself. It then follows that the temperature anomaly is periodically modulated with a frequency proportional to the vertical wind shear. A strong local bound on wave energy is also found. Reanalysis diagnostics are presented that indicate consistency with key findings from this theory.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-01
    Description: A new approach is put forward for defining extratropical teleconnection patterns. The zonal wind field at 250 hPa is analyzed separately in the North Atlantic and North Pacific Ocean sectors during the winter season (December–March). Teleconnectivity of this field is found to be particularly strong. EOF analysis of the zonal wind field yields patterns that (i) are robust with respect to the range of frequencies included in the data, (ii) relate clearly to the position of the climatological-mean jets, and (iii) are broadly consistent with their traditionally defined counterparts in terms of climatic impacts. The patterns are characterized by a north–south shifting or an extension/retraction of the eddy-driven jet in its exit region and similar changes at the entrance region of the subtropical jet. The patterns also reflect the degree of separation between the subtropical and eddy-driven jets. Atlantic EOFs 1 and 2 are counterparts of the North Atlantic Oscillation (NAO) and eastern Atlantic pattern, respectively, while Pacific EOF 1 is the counterpart of the Pacific–North America (PNA) pattern. Pacific EOF 2, a pattern that has not been previously noted, has a pronounced impact on the jet configuration and precipitation over the western coast of North America. This pattern may be of particular interest for precipitation forecasting applications. Atlantic EOF 1 exhibits a long decorrelation time and strong negative skewness. The relation between these jet variability patterns and the storm-track variability is examined, including the dynamical interaction between baroclinic waves and the jets. In each sector, the eddy forcing is found to maintain the respective jet anomalies.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-01
    Description: An isentropic potential vorticity (PV) budget analysis is employed to examine the role of synoptic transients, advection, and nonconservative processes as forcings for the evolution of the low-frequency PV anomalies locally and those associated with the North Atlantic Oscillation (NAO) and the Pacific–North American (PNA) pattern. Specifically, the rate of change of the low-frequency PV is expressed as a sum of tendencies due to divergence of eddy transport, advection by the low-frequency flow (hereafter referred to as advection), and the residual nonconservative processes. The balance between the variances and covariances of these terms is illustrated using a novel vector representation. It is shown that for most locations, as well as for the PNA pattern, the PV variability is dominantly driven by advection. The eddy forcing explains a small amount of the tendency variance. For the NAO, the role of synoptic eddy fluxes is found to be stronger, explaining on average 15% of the NAO tendency variance. Previous studies have not assessed quantitively how the various forcings balance the tendency. Thus, such studies may have overestimated the role of eddy fluxes for the evolution of teleconnections by examining, for example, composites and regressions that indicate maintenance, rather than evolution driven by the eddies. The authors confirm this contrasting view by showing that during persistent blocking (negative NAO) episodes the eddy driving is relatively stronger.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-14
    Description: The influence of the Atlantic multidecadal variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealized simulations with state-of-the-art coupled models. Data used are obtained from a multimodel ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic Ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extratropical response is found in the form of a wave train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to the cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted toward the equator in the eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.
    Description: Published
    Description: 347-360
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Athanasiadis, P. J., Yeager, S., Kwon, Y. O., Bellucci, A., Smith, D. W., & Tibaldi, S. Decadal predictability of North Atlantic blocking and the NAO. Npj Climate and Atmospheric Science, 3(1), (2020): 20, doi:10.1038/s41612-020-0120-6.
    Description: Can multi-annual variations in the frequency of North Atlantic atmospheric blocking and mid-latitude circulation regimes be skilfully predicted? Recent advances in seasonal forecasting have shown that mid-latitude climate variability does exhibit significant predictability. However, atmospheric predictability has generally been found to be quite limited on multi-annual timescales. New decadal prediction experiments from NCAR are found to exhibit remarkable skill in reproducing the observed multi-annual variations of wintertime blocking frequency over the North Atlantic and of the North Atlantic Oscillation (NAO) itself. This is partly due to the large ensemble size that allows the predictable component of the atmospheric variability to emerge from the background chaotic component. The predictable atmospheric anomalies represent a forced response to oceanic low-frequency variability that strongly resembles the Atlantic Multi-decadal Variability (AMV), correctly reproduced in the decadal hindcasts thanks to realistic ocean initialization and ocean dynamics. The occurrence of blocking in certain areas of the Euro-Atlantic domain determines the concurrent circulation regime and the phase of known teleconnections, such as the NAO, consequently affecting the stormtrack and the frequency and intensity of extreme weather events. Therefore, skilfully predicting the decadal fluctuations of blocking frequency and the NAO may be used in statistical predictions of near-term climate anomalies, and it provides a strong indication that impactful climate anomalies may also be predictable with improved dynamical models.
    Description: This study received support by the Blue-Action project (European Union’s Horizon 2020 research and innovation program, #727852). A.B. was supported by the H2020 EUCP (grant no. GA 776613) project. S.Y. acknowledges the support of National Science Foundation (NSF) grants OPP-1737377 and OCE-1243015. NCAR is a major facility sponsored by NSF under Cooperative Agreement No. 1852977. The CESM-DPLE was generated using computational resources provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231, as well as by an Accelerated Scientific Discovery grant for Cheyenne (https://doi.org/10.5065/D6RX99HX) that was awarded by NCAR’s Computational and Information Systems Laboratory. Y.-O.K. was supported by the DOE Regional and Global Model Analysis Program (DE-SC0019492), and the NSF Arctic Natural Science Program (OPP-1736738) and Climate and Large-scale Dynamics Program (AGS-1355339).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...