ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-04
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-14
    Description: This study investigates the sensitivity of the North Atlantic storm track to future changes in local and global sea surface temperature (SST) and highlights the role of SST changes remote to the North Atlantic. Results are based on three related coupled climate models: the Community Climate System Model, version 4 (CCSM4), the Community Earth System Model, version 1 (Community Atmosphere Model, version 5) [CESM1(CAM5)], and the Norwegian Earth System Model, version 1 (intermediate resolution) (NorESM1-M). Analysis reveals noticeable intermodel differences in projected storm-track changes from the coupled simulations [i.e., the difference in 200-hPa eddy activity between the representative concentration pathway 8.5 (RCP8.5) and historical scenarios]. In the CCSM4 coupled simulations, the North Atlantic storm track undergoes a poleward shift and eastward extension. In CESM1(CAM5), the storm-track change is dominated by an intensification and eastward extension. In NorESM1-M, the storm-track change is characterized by a weaker intensification and slight eastward extension. Atmospheric experiments driven only by projected local (North Atlantic) SST changes from the coupled models fail to reproduce the magnitude and structure of the projected changes in eddy activity aloft and zonal wind from the coupled simulations. Atmospheric experiments driven by global SST and sea ice changes do, however, reproduce the eastward extension. Additional experiments suggest that increasing greenhouse gas (GHG) concentrations do not directly influence storm-track changes in the coupled simulations, although they do through GHG-induced changes in SST. The eastward extension of the North Atlantic storm track is hypothesized to be linked to western Pacific SST changes that influence tropically forced Rossby wave trains, but further studies are needed to isolate this mechanism from other dynamical adjustments to global warming.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-07
    Description: The decline in Barents Sea ice has been implicated in forcing the “warm-Arctic cold-Siberian” (WACS) anomaly pattern via enhanced turbulent heat flux (THF). This study investigates interannual variability in winter [December–February (DJF)] Barents Sea THF and its relationship to Barents Sea ice and the large-scale atmospheric flow. ERA-Interim and observational data from 1979/80 to 2011/12 are used. The leading pattern (EOF1: 33%) of winter Barents Sea THF variability is relatively weakly correlated (r = 0.30) with Barents Sea ice and appears to be driven primarily by atmospheric variability. The sea ice–related THF variability manifests itself as EOF2 (20%, r = 0.60). THF EOF2 is robust over the entire winter season, but its link to the WACS pattern is not. However, the WACS pattern emerges consistently as the second EOF (20%) of Eurasian surface air temperature (SAT) variability in all winter months. When Eurasia is cold, there are indeed weak reductions in Barents Sea ice, but the associated THF anomalies are on average negative, which is inconsistent with the proposed direct atmospheric response to sea ice variability. Lead–lag correlation analyses on shorter time scales support this conclusion and indicate that atmospheric variability plays an important role in driving observed variability in Barents Sea THF and ice cover, as well as the WACS pattern.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-27
    Description: This study investigates the global response of the midlatitude atmospheric circulation to 1.5 °C and 2.0 °C of warming using the HAPPI Half a degree Additional warming, Projections, Prognosis and Impacts ensemble, with a focus on the winter season. Characterizing and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to the 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, western Europe and the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2.0 °C world, though the ensemble spread still allows for both wetting and drying responses.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-12-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-01
    Description: Patterns of correlation between tree rings and local temperature or precipitation are investigated using 762 International Tree-Ring Data Bank standardized ring width site chronology time series, and a gridded dataset of temperature and precipitation. Coherent regional- and, in some cases, hemispheric-scale patterns of correlation are found in the extratropical Northern Hemisphere for both the summer prior to and the summer concurrent with ring width formation across different species and over large distances. Among those chronologies that are primarily linked to temperature, thicker ring widths are generally associated with anomalously cool prior summer temperature and anomalously warm concurrent summer temperature. Reconstructions of local summer temperature using prior, concurrent, and/or subsequent year ring widths as predictors demonstrate that useful climate–growth information generally exists in ring widths that are both concurrent with and subsequent to the summer temperature anomaly. Consistent prior summer temperature–ring width relationships have received relatively little previous attention. Among those chronologies that are primarily linked to precipitation, thicker ring widths are generally associated with high summer precipitation in both the year prior to and the year concurrent with ring formation. The magnitude and spatial consistency of temperature correlations are greater than those for precipitation, at least on the hemispheric scale. These results support and serve to generalize the conclusions of prior regionally restricted and/or species-specific studies relating ring width to energy and/or water limitations. Regional- and hemispheric-scale patterns of ring width–temperature or ring width–precipitation correlations show up more clearly in species-specific and frequency-dependent analyses. Different species respond differently to temperature and precipitation anomalies. Consistent with the hemispheric patterns described above, most standardized ring width time series more faithfully record the high frequency component of the temperature signal than the low frequency component. The potential for enhanced coherence in regionally restricted, species-specific, and frequency-dependent analyses is independently verified by examining the correlation between ring width time series over geographical distance. This broader characterization of relationships between tree-ring widths and local climate provides an objective basis for selecting tree ring or other similarly high-resolution proxy data for regional-, hemispheric-, or global-scale paleoclimate reconstructions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-15
    Description: Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-05-01
    Description: Month-to-month storm-track variability is investigated via EOF analyses performed on ERA-40 monthly-averaged high-pass filtered daily 850-hPa meridional heat flux and the variances of 300-hPa meridional wind and 500-hPa height. The analysis is performed both in hemispheric and sectoral domains of the Northern and Southern Hemispheres. Patterns characterized as “pulsing” and “latitudinal shifting” of the climatological-mean storm tracks emerge as the leading sectoral patterns of variability. Based on the analysis presented, storm-track variability on the spatial scale of the two Northern Hemisphere sectors appears to be largely, but perhaps not completely, independent. Pulsing and latitudinally shifting storm tracks are accompanied by zonal wind anomalies consistent with eddy-forced accelerations and geopotential height anomalies that project strongly on the dominant patterns of geopotential height variability. The North Atlantic Oscillation (NAO)–Northern Hemisphere annular mode (NAM) is associated with a pulsing of the Atlantic storm track and a meridional displacement of the upper-tropospheric jet exit region, whereas the eastern Atlantic (EA) pattern is associated with a latitudinally shifting storm track and an extension or retraction of the upper-tropospheric jet. Analogous patterns of storm-track and upper-tropospheric jet variability are associated with the western Pacific (WP) and Pacific–North America (PNA) patterns. Wave–mean flow relationships shown here are more clearly defined than in previous studies and are shown to extend through the depth of the troposphere. The Southern Hemisphere annular mode (SAM) is associated with a latitudinally shifting storm track over the South Atlantic and Indian Oceans and a pulsing South Pacific storm track. The patterns of storm-track variability are shown to be related to simple distortions of the climatological-mean upper-tropospheric jet.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-05-01
    Description: A new approach is put forward for defining extratropical teleconnection patterns. The zonal wind field at 250 hPa is analyzed separately in the North Atlantic and North Pacific Ocean sectors during the winter season (December–March). Teleconnectivity of this field is found to be particularly strong. EOF analysis of the zonal wind field yields patterns that (i) are robust with respect to the range of frequencies included in the data, (ii) relate clearly to the position of the climatological-mean jets, and (iii) are broadly consistent with their traditionally defined counterparts in terms of climatic impacts. The patterns are characterized by a north–south shifting or an extension/retraction of the eddy-driven jet in its exit region and similar changes at the entrance region of the subtropical jet. The patterns also reflect the degree of separation between the subtropical and eddy-driven jets. Atlantic EOFs 1 and 2 are counterparts of the North Atlantic Oscillation (NAO) and eastern Atlantic pattern, respectively, while Pacific EOF 1 is the counterpart of the Pacific–North America (PNA) pattern. Pacific EOF 2, a pattern that has not been previously noted, has a pronounced impact on the jet configuration and precipitation over the western coast of North America. This pattern may be of particular interest for precipitation forecasting applications. Atlantic EOF 1 exhibits a long decorrelation time and strong negative skewness. The relation between these jet variability patterns and the storm-track variability is examined, including the dynamical interaction between baroclinic waves and the jets. In each sector, the eddy forcing is found to maintain the respective jet anomalies.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...