ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maheswaran, Shyamala -- Haber, Daniel A -- England -- Nature. 2015 Nov 26;527(7579):452-3. doi: 10.1038/nature16313. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drug Resistance, Neoplasm/*drug effects ; *Epithelial-Mesenchymal Transition ; Female ; Lung Neoplasms/*pathology/*secondary ; Male ; Mammary Neoplasms, Experimental/*drug therapy/*pathology ; Neoplasm Metastasis/*pathology ; Pancreatic Neoplasms/*drug therapy/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-15
    Description: Satellite repeats in heterochromatin are transcribed into noncoding RNAs that have been linked to gene silencing and maintenance of chromosomal integrity. Using digital gene expression analysis, we showed that these transcripts are greatly overexpressed in mouse and human epithelial cancers. In 8 of 10 mouse pancreatic ductal adenocarcinomas (PDACs), pericentromeric satellites accounted for a mean 12% (range 1 to 50%) of all cellular transcripts, a mean 40-fold increase over that in normal tissue. In 15 of 15 human PDACs, alpha satellite transcripts were most abundant and HSATII transcripts were highly specific for cancer. Similar patterns were observed in cancers of the lung, kidney, ovary, colon, and prostate. Derepression of satellite transcripts correlated with overexpression of the long interspersed nuclear element 1 (LINE-1) retrotransposon and with aberrant expression of neuroendocrine-associated genes proximal to LINE-1 insertions. The overexpression of satellite transcripts in cancer may reflect global alterations in heterochromatin silencing and could potentially be useful as a biomarker for cancer detection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701432/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701432/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ting, David T -- Lipson, Doron -- Paul, Suchismita -- Brannigan, Brian W -- Akhavanfard, Sara -- Coffman, Erik J -- Contino, Gianmarco -- Deshpande, Vikram -- Iafrate, A John -- Letovsky, Stan -- Rivera, Miguel N -- Bardeesy, Nabeel -- Maheswaran, Shyamala -- Haber, Daniel A -- CA129933/CA/NCI NIH HHS/ -- L30 CA142210/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):593-6. doi: 10.1126/science.1200801. Epub 2011 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233348" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma in Situ/genetics/pathology ; Carcinoma, Pancreatic Ductal/genetics/pathology ; Colonic Neoplasms/genetics/pathology ; DNA Methylation ; DNA, Neoplasm/genetics ; DNA, Satellite/*genetics ; Female ; Gene Expression ; Gene Expression Profiling ; Heterochromatin/chemistry/genetics ; Humans ; Long Interspersed Nucleotide Elements ; Lung Neoplasms/genetics/pathology ; Male ; Mice ; Mice, Nude ; Neoplasms/*genetics/pathology ; Neurosecretory Systems/metabolism ; Ovarian Neoplasms/genetics/pathology ; Pancreatic Neoplasms/*genetics/pathology ; Prostatic Neoplasms/genetics/pathology ; RNA, Neoplasm/*genetics/metabolism ; RNA, Untranslated/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-02
    Description: Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)-beta pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Min -- Bardia, Aditya -- Wittner, Ben S -- Stott, Shannon L -- Smas, Malgorzata E -- Ting, David T -- Isakoff, Steven J -- Ciciliano, Jordan C -- Wells, Marissa N -- Shah, Ajay M -- Concannon, Kyle F -- Donaldson, Maria C -- Sequist, Lecia V -- Brachtel, Elena -- Sgroi, Dennis -- Baselga, Jose -- Ramaswamy, Sridhar -- Toner, Mehmet -- Haber, Daniel A -- Maheswaran, Shyamala -- EB008047/EB/NIBIB NIH HHS/ -- K12 CA087723/CA/NCI NIH HHS/ -- NCI CA129933/CA/NCI NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- U01 EB012493/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):580-4. doi: 10.1126/science.1228522.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/genetics/metabolism ; Breast Neoplasms/blood/genetics/*pathology ; Cell Count ; Cell Movement ; Epithelial Cells/pathology ; *Epithelial-Mesenchymal Transition ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Mesoderm/pathology ; Mice ; Neoplasm Transplantation ; Neoplastic Cells, Circulating/metabolism/*pathology ; RNA, Neoplasm/chemistry/genetics ; Transcription, Genetic ; Transforming Growth Factor beta/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-06
    Description: Circulating tumour cells (CTCs) shed into blood from primary cancers include putative precursors that initiate distal metastases. Although these cells are extraordinarily rare, they may identify cellular pathways contributing to the blood-borne dissemination of cancer. Here, we adapted a microfluidic device for efficient capture of CTCs from an endogenous mouse pancreatic cancer model and subjected CTCs to single-molecule RNA sequencing, identifying Wnt2 as a candidate gene enriched in CTCs. Expression of WNT2 in pancreatic cancer cells suppresses anoikis, enhances anchorage-independent sphere formation, and increases metastatic propensity in vivo. This effect is correlated with fibronectin upregulation and suppressed by inhibition of MAP3K7 (also known as TAK1) kinase. In humans, formation of non-adherent tumour spheres by pancreatic cancer cells is associated with upregulation of multiple WNT genes, and pancreatic CTCs revealed enrichment for WNT signalling in 5 out of 11 cases. Thus, molecular analysis of CTCs may identify candidate therapeutic targets to prevent the distal spread of cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408856/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408856/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Min -- Ting, David T -- Stott, Shannon L -- Wittner, Ben S -- Ozsolak, Fatih -- Paul, Suchismita -- Ciciliano, Jordan C -- Smas, Malgorzata E -- Winokur, Daniel -- Gilman, Anna J -- Ulman, Matthew J -- Xega, Kristina -- Contino, Gianmarco -- Alagesan, Brinda -- Brannigan, Brian W -- Milos, Patrice M -- Ryan, David P -- Sequist, Lecia V -- Bardeesy, Nabeel -- Ramaswamy, Sridhar -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 5K12CA87723-09/CA/NCI NIH HHS/ -- 5R01EB008047/EB/NIBIB NIH HHS/ -- CA129933/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- U01 EB012493/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jul 26;487(7408):510-3. doi: 10.1038/nature11217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763454" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival ; Contact Inhibition ; Disease Models, Animal ; Gene Expression Regulation, Neoplastic/*genetics ; Genes, Neoplasm/genetics ; Humans ; MAP Kinase Kinase Kinases/antagonists & inhibitors ; Mice ; Neoplasm Metastasis/*genetics ; Neoplastic Cells, Circulating/*metabolism ; Pancreatic Neoplasms/*genetics/*pathology ; RNA, Messenger/analysis/biosynthesis ; Sequence Analysis, RNA ; Wnt Proteins/genetics/*metabolism ; Wnt Signaling Pathway/*genetics ; Wnt2 Protein/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-12-24
    Description: A human Wilms tumor cell line (RM1) was developed to test the tumor suppressor activity of WT1, a zinc finger transcription factor that is expressed in the developing human kidney and is mutationally inactivated in a subset of Wilms tumors. Transfection of each of four wild-type WT1 isoforms suppressed the growth of RM1 cells. The endogenous WT1 transcript in these cells was devoid of exon 2 sequences, a splicing alteration that was also detected in varying amounts in all Wilms tumors tested but not in normal kidney. Production of this abnormal transcript, which encodes a functionally altered protein, may represent a distinct mechanism for inactivating WT1 in Wilms tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haber, D A -- Park, S -- Maheswaran, S -- Englert, C -- Re, G G -- Hazen-Martin, D J -- Sens, D A -- Garvin, A J -- CA37887/CA/NCI NIH HHS/ -- CA58596/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2057-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Massachusetts General Hospital Cancer Center, Boston 02129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266105" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Division/genetics ; DNA-Binding Proteins/biosynthesis/*genetics/physiology ; Genes, Wilms Tumor/genetics/*physiology ; Humans ; Mice ; Mice, Nude ; Molecular Sequence Data ; Neoplasm Transplantation ; RNA, Messenger/genetics ; Tumor Cells, Cultured ; WT1 Proteins ; Wilms Tumor/*genetics/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-12
    Description: Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor-positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358808/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358808/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Min -- Bardia, Aditya -- Aceto, Nicola -- Bersani, Francesca -- Madden, Marissa W -- Donaldson, Maria C -- Desai, Rushil -- Zhu, Huili -- Comaills, Valentine -- Zheng, Zongli -- Wittner, Ben S -- Stojanov, Petar -- Brachtel, Elena -- Sgroi, Dennis -- Kapur, Ravi -- Shioda, Toshihiro -- Ting, David T -- Ramaswamy, Sridhar -- Getz, Gad -- Iafrate, A John -- Benes, Cyril -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- P41 EB002503/EB/NIBIB NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- U01 EB012493/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):216-20. doi: 10.1126/science.1253533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet, Stockholm, Sweden. ; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. ; Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. ; Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Harvard Medical School, Charlestown, MA 02129, USA. maheswaran@helix.mgh.harvard.edu haber@helix.mgh.harvard.edu. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA. maheswaran@helix.mgh.harvard.edu haber@helix.mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*pharmacology/therapeutic use ; Breast Neoplasms/*drug therapy/genetics ; Cell Culture Techniques ; Cell Separation ; Culture ; Drug Resistance, Neoplasm/*genetics ; Drug Screening Assays, Antitumor/methods ; Estrogen Receptor alpha/genetics ; Female ; Gene Frequency ; Humans ; Mice ; Microfluidics/methods ; *Molecular Targeted Therapy ; Mutation ; Neoplastic Cells, Circulating/*drug effects/metabolism ; Phosphatidylinositol 3-Kinases/genetics ; Sequence Analysis, DNA ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-19
    Description: Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, David T -- Zheng, Yu -- Wittner, Ben S -- Lee, Richard J -- Zhu, Huili -- Broderick, Katherine T -- Desai, Rushil -- Fox, Douglas B -- Brannigan, Brian W -- Trautwein, Julie -- Arora, Kshitij S -- Desai, Niyati -- Dahl, Douglas M -- Sequist, Lecia V -- Smith, Matthew R -- Kapur, Ravi -- Wu, Chin-Lee -- Shioda, Toshi -- Ramaswamy, Sridhar -- Ting, David T -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 2R01CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1351-6. doi: 10.1126/science.aab0917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383955" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/pharmacology/*therapeutic use ; Animals ; Cell Line, Tumor ; Drug Resistance, Neoplasm/*genetics ; Humans ; Male ; Mice ; Neoplastic Cells, Circulating/drug effects/*metabolism ; Phenylthiohydantoin/*analogs & derivatives/pharmacology/therapeutic use ; Prostate/drug effects/metabolism/pathology ; Prostatic Neoplasms/*drug therapy/*pathology ; Proto-Oncogene Proteins/genetics/metabolism ; RNA Splicing ; Receptors, Androgen/*genetics ; Sequence Analysis, RNA/methods ; Signal Transduction ; Single-Cell Analysis/methods ; Transcriptome ; Wnt Proteins/genetics/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica B: Physics of Condensed Matter 180-181 (1992), S. 591-593 
    ISSN: 0921-4526
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica B: Physics of Condensed Matter 180-181 (1992), S. 1053-1055 
    ISSN: 0921-4526
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...