ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2014-01-15
    Description: Females have generally more robust immune responses than males for reasons that are not well-understood. Here we used a systems analysis to investigate these differences by analyzing the neutralizing antibody response to a trivalent inactivated seasonal influenza vaccine (TIV) and a large number of immune system components, including serum cytokines...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-05-08
    Description: The c-Jun NH2-terminal kinase (JNK) is activated when cells are exposed to ultraviolet (UV) radiation. However, the functional consequence of JNK activation in UV-irradiated cells has not been established. It is shown here that JNK is required for UV-induced apoptosis in primary murine embryonic fibroblasts. Fibroblasts with simultaneous targeted disruptions of all the functional Jnk genes were protected against UV-stimulated apoptosis. The absence of JNK caused a defect in the mitochondrial death signaling pathway, including the failure to release cytochrome c. These data indicate that mitochondria are influenced by proapoptotic signal transduction through the JNK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tournier, C -- Hess, P -- Yang, D D -- Xu, J -- Turner, T K -- Nimnual, A -- Bar-Sagi, D -- Jones, S N -- Flavell, R A -- Davis, R J -- New York, N.Y. -- Science. 2000 May 5;288(5467):870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry & Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 3 ; Caspase 9 ; Caspases/metabolism ; Cell Count ; Cell Division ; Cells, Cultured ; Cytochrome c Group/*metabolism ; DNA Fragmentation ; Enzyme Activation ; Fibroblasts ; Gene Targeting ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Methyl Methanesulfonate/pharmacology ; Mice ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinases/genetics/*metabolism ; NF-kappa B/metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Tumor Suppressor Protein p53/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-06-24
    Description: T helper 1 (TH1) cells mediate cellular immunity, whereas TH2 cells potentiate antiparasite and humoral immunity. We used a complementary DNA subtraction method, representational display analysis, to show that the small guanosine triphosphatase Rac2 is expressed selectively in murine TH1 cells. Rac induces the interferon-gamma (IFN-gamma) promoter through cooperative activation of the nuclear factor kappa B and p38 mitogen-activated protein kinase pathways. Tetracycline-regulated transgenic mice expressing constitutively active Rac2 in T cells exhibited enhanced IFN-gamma production. Dominant-negative Rac inhibited IFN-gamma production in murine T cells. Moreover, T cells from Rac2-/- mice showed decreased IFN-gamma production under TH1 conditions in vitro. Thus, Rac2 activates TH1-specific signaling and IFN-gamma gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, B -- Yu, H -- Zheng, W -- Voll, R -- Na, S -- Roberts, A W -- Williams, D A -- Davis, R J -- Ghosh, S -- Flavell, R A -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cells, Cultured ; Cytokines/biosynthesis/genetics ; Gene Expression Regulation ; Humans ; Interferon-gamma/biosynthesis/*genetics ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinases/metabolism ; NF-kappa B/metabolism ; Promoter Regions, Genetic ; Signal Transduction ; Th1 Cells/cytology/*immunology/*metabolism ; Transfection ; p38 Mitogen-Activated Protein Kinases ; rac GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-11-25
    Description: beta-Arrestins, originally discovered in the context of heterotrimeric guanine nucleotide binding protein-coupled receptor (GPCR) desensitization, also function in internalization and signaling of these receptors. We identified c-Jun amino-terminal kinase 3 (JNK3) as a binding partner of beta-arrestin 2 using a yeast two-hybrid screen and by coimmunoprecipitation from mouse brain extracts or cotransfected COS-7 cells. The upstream JNK activators apoptosis signal-regulating kinase 1 (ASK1) and mitogen-activated protein kinase (MAPK) kinase 4 were also found in complex with beta-arrestin 2. Cellular transfection of beta-arrestin 2 caused cytosolic retention of JNK3 and enhanced JNK3 phosphorylation stimulated by ASK1. Moreover, stimulation of the angiotensin II type 1A receptor activated JNK3 and triggered the colocalization of beta-arrestin 2 and active JNK3 to intracellular vesicles. Thus, beta-arrestin 2 acts as a scaffold protein, which brings the spatial distribution and activity of this MAPK module under the control of a GPCR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, P H -- Chow, C W -- Miller, W E -- Laporte, S A -- Field, M E -- Lin, F T -- Davis, R J -- Lefkowitz, R J -- CA65861/CA/NCI NIH HHS/ -- CA85422/CA/NCI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090355" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin II/metabolism/pharmacology ; Animals ; Arrestins/genetics/*metabolism ; COS Cells ; Cell Line ; Cell Nucleus/metabolism ; Cytosol/enzymology/metabolism ; Endosomes/enzymology/metabolism ; Enzyme Activation ; Humans ; *MAP Kinase Kinase 4 ; MAP Kinase Kinase Kinase 5 ; MAP Kinase Kinase Kinases/*metabolism ; *MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 10 ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Rats ; Receptor, Angiotensin, Type 1 ; Receptors, Angiotensin/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weston, C R -- Davis, R J -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2439-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axin Protein ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Cytoplasm/enzymology ; Cytoskeletal Proteins/metabolism ; Drug Design ; Glycogen Synthase/metabolism ; Glycogen Synthase Kinase 3 ; Humans ; Insulin/*metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; *Repressor Proteins ; *Signal Transduction ; Substrate Specificity ; *Trans-Activators ; Wnt Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-12-31
    Description: The nuclear factor of activated T cells (NFAT) group of transcription factors is retained in the cytoplasm of quiescent cells. NFAT activation is mediated in part by induced nuclear import. This process requires calcium-dependent dephosphorylation of NFAT caused by the phosphatase calcineurin. The c-Jun amino-terminal kinase (JNK) phosphorylates NFAT4 on two sites. Mutational removal of the JNK phosphorylation sites caused constitutive nuclear localization of NFAT4. In contrast, JNK activation in calcineurin-stimulated cells caused nuclear exclusion of NFAT4. These findings show that the nuclear accumulation of NFAT4 promoted by calcineurin is opposed by the JNK signal transduction pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow, C W -- Rincon, M -- Cavanagh, J -- Dickens, M -- Davis, R J -- CA58396/CA/NCI NIH HHS/ -- CA65831/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1638-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; COS Cells ; Calcineurin/metabolism ; Calcineurin Inhibitors ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Cyclosporine/pharmacology ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Mutation ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphorylation ; Protein Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-12-16
    Description: The c-Jun NH2-terminal kinase (JNK) signaling pathway has been implicated in the immune response that is mediated by the activation and differentiation of CD4 helper T (TH) cells into TH1 and TH2 effector cells. JNK activity observed in wild-type activated TH cells was severely reduced in TH cells from Jnk1-/- mice. The Jnk1-/- T cells hyperproliferated, exhibited decreased activation-induced cell death, and preferentially differentiated to TH2 cells. The enhanced production of TH2 cytokines by Jnk1-/- cells was associated with increased nuclear accumulation of the transcription factor NFATc. Thus, the JNK1 signaling pathway plays a key role in T cell receptor-initiated TH cell proliferation, apoptosis, and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, C -- Yang, D D -- Wysk, M -- Whitmarsh, A J -- Davis, R J -- Flavell, R A -- CA65861/CA/NCI NIH HHS/ -- CA72009/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2092-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; Cell Differentiation ; Cell Division ; DNA-Binding Proteins/metabolism ; Female ; Gene Targeting ; Hemocyanin/immunology ; Interferon-gamma/biosynthesis ; Interleukins/biosynthesis ; JNK Mitogen-Activated Protein Kinases ; *Lymphocyte Activation ; Male ; Mice ; Mice, Knockout ; *Mitogen-Activated Protein Kinases ; NFATC Transcription Factors ; *Nuclear Proteins ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; Th1 Cells/cytology/immunology ; Th2 Cells/cytology/immunology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-12-06
    Description: A high-fat diet causes activation of the regulatory protein c-Jun NH2-terminal kinase 1 (JNK1) and triggers development of insulin resistance. JNK1 is therefore a potential target for therapeutic treatment of metabolic syndrome. We explored the mechanism of JNK1 signaling by engineering mice in which the Jnk1 gene was ablated selectively in adipose tissue. JNK1 deficiency in adipose tissue suppressed high-fat diet-induced insulin resistance in the liver. JNK1-dependent secretion of the inflammatory cytokine interleukin-6 by adipose tissue caused increased expression of liver SOCS3, a protein that induces hepatic insulin resistance. Thus, JNK1 activation in adipose tissue can cause insulin resistance in the liver.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabio, Guadalupe -- Das, Madhumita -- Mora, Alfonso -- Zhang, Zhiyou -- Jun, John Y -- Ko, Hwi Jin -- Barrett, Tamera -- Kim, Jason K -- Davis, Roger J -- DK52530/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 CA065861-14/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1539-43. doi: 10.1126/science.1160794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056984" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/metabolism ; Animals ; Dietary Fats/administration & dosage ; Enzyme Activation ; Glucose/metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins/metabolism ; *Insulin Resistance ; Interleukin-6/administration & dosage/metabolism ; Liver/*metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; *Signal Transduction ; *Stress, Physiological ; Suppressor of Cytokine Signaling Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zijlstra, Albert A -- Davis, Richard J -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1307. doi: 10.1126/science.1229080.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, UK. albert.zijlstra@manchester.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22984062" target="_blank"〉PubMed〈/a〉
    Keywords: Astronomy/*history ; England ; History, 20th Century ; History, 21st Century ; Radio/*history ; Telescopes/*history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-12
    Description: The cJun NH(2)-terminal kinase (JNK) signaling pathway contributes to inflammation and plays a key role in the metabolic response to obesity, including insulin resistance. Macrophages are implicated in this process. To test the role of JNK, we established mice with selective JNK deficiency in macrophages. We report that feeding a high-fat diet to control and JNK-deficient mice caused similar obesity, but only mice with JNK-deficient macrophages remained insulin-sensitive. The protection of mice with macrophage-specific JNK deficiency against insulin resistance was associated with reduced tissue infiltration by macrophages. Immunophenotyping demonstrated that JNK was required for pro-inflammatory macrophage polarization. These studies demonstrate that JNK in macrophages is required for the establishment of obesity-induced insulin resistance and inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835653/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835653/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Myoung Sook -- Jung, Dae Young -- Morel, Caroline -- Lakhani, Saquib A -- Kim, Jason K -- Flavell, Richard A -- Davis, Roger J -- CA065861/CA/NCI NIH HHS/ -- DK032520/DK/NIDDK NIH HHS/ -- DK080756/DK/NIDDK NIH HHS/ -- DK090963/DK/NIDDK NIH HHS/ -- DK093000/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- R24 DK090963/DK/NIDDK NIH HHS/ -- U24 DK093000/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):218-22. doi: 10.1126/science.1227568. Epub 2012 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223452" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/immunology/pathology ; Animals ; Diet, High-Fat ; Glucose Clamp Technique ; Immunophenotyping ; Inflammation/immunology/*physiopathology ; *Insulin Resistance ; Islets of Langerhans/pathology ; MAP Kinase Signaling System ; Macrophage Activation ; Macrophages/*enzymology/*immunology/physiology ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Mitogen-Activated Protein Kinase 9/deficiency/genetics/*metabolism ; Obesity/immunology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...