ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-26
    Description: Understanding how climate change will impact whole ecosystems, rather than single species within them, remains challenging. Now, research into the direct and indirect impacts of climate on the functioning of Arctic terrestrial ecosystems reveals effects on tundra primary production, food-web structure and the strength of species interaction. Nature Climate Change 4 379 doi: 10.1038/nclimate2168
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-03
    Description: Article The mechanisms that determine the relationship between diversity and productivity in marine phytoplankton remain unclear. Here, Vallina et al. show that selective predation and transient competitive exclusion determine phytoplankton community composition. Nature Communications doi: 10.1038/ncomms5299 Authors: S. M. Vallina, M. J. Follows, S. Dutkiewicz, J. M. Montoya, P. Cermeno, M. Loreau
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-11-05
    Description: At eight European field sites, the impact of loss of plant diversity on primary productivity was simulated by synthesizing grassland communities with different numbers of plant species. Results differed in detail at each location, but there was an overall log-linear reduction of average aboveground biomass with loss of species. For a given number of species, communities with fewer functional groups were less productive. These diversity effects occurred along with differences associated with species composition and geographic location. Niche complementarity and positive species interactions appear to play a role in generating diversity-productivity relationships within sites in addition to sampling from the species pool.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hector -- Schmid -- Beierkuhnlein -- Caldeira -- Diemer -- Dimitrakopoulos -- Finn -- Freitas -- Giller -- Good -- Harris -- Hogberg -- Huss-Danell -- Joshi -- Jumpponen -- Korner -- Leadley -- Loreau -- Minns -- Mulder -- O'Donovan -- Otway -- Pereira -- Prinz -- Read -- et -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1123-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Natural Environmental Research Council (NERC) Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire, UK, GB-SL5 7PY. Institut fur Umweltwissenschaften, Universitat Zurich, Winterthurerstrasse 190, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550043" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-10-27
    Description: The ecological consequences of biodiversity loss have aroused considerable interest and controversy during the past decade. Major advances have been made in describing the relationship between species diversity and ecosystem processes, in identifying functionally important species, and in revealing underlying mechanisms. There is, however, uncertainty as to how results obtained in recent experiments scale up to landscape and regional levels and generalize across ecosystem types and processes. Larger numbers of species are probably needed to reduce temporal variability in ecosystem processes in changing environments. A major future challenge is to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loreau, M -- Naeem, S -- Inchausti, P -- Bengtsson, J -- Grime, J P -- Hector, A -- Hooper, D U -- Huston, M A -- Raffaelli, D -- Schmid, B -- Tilman, D -- Wardle, D A -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):804-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Ecologie, UMR 7625, Ecole Normale Superieure, 46 rue d'Ulm, F-75230 Paris Cedex 05, France. Loreau@ens.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679658" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecology ; *Ecosystem ; *Environment ; Plant Physiological Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-11-06
    Description: The loss of biodiversity can have significant impacts on ecosystem functioning, but the mechanisms involved lack empirical confirmation. Using soil microcosms, we show experimentally that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on leaf litter mass loss and soil respiration, two key soil ecosystem processes. These experiments confirm theoretical predictions that biodiversity effects on ecosystem functioning can be predicted by the degree of functional differences among species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heemsbergen, D A -- Berg, M P -- Loreau, M -- van Hal, J R -- Faber, J H -- Verhoef, H A -- New York, N.Y. -- Science. 2004 Nov 5;306(5698):1019-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vrije Universiteit, Institute of Ecological Science, Department of Animal Ecology, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15528441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Ecosystem ; Plant Leaves ; *Soil ; Soil Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dirzo, Rodolfo -- Loreau, Michel -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):943.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Congresses as Topic ; Conservation of Natural Resources ; Ecosystem ; International Cooperation ; *Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-13
    Description: Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isbell, Forest -- Calcagno, Vincent -- Hector, Andy -- Connolly, John -- Harpole, W Stanley -- Reich, Peter B -- Scherer-Lorenzen, Michael -- Schmid, Bernhard -- Tilman, David -- van Ruijven, Jasper -- Weigelt, Alexandra -- Wilsey, Brian J -- Zavaleta, Erika S -- Loreau, Michel -- England -- Nature. 2011 Aug 10;477(7363):199-202. doi: 10.1038/nature10282.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada. forest.isbell@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21832994" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Ecology/methods ; *Ecosystem ; Extinction, Biological ; Models, Biological ; Plant Development ; *Plant Physiological Phenomena ; *Plants/classification ; Poaceae ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-06-09
    Description: The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardinale, Bradley J -- Duffy, J Emmett -- Gonzalez, Andrew -- Hooper, David U -- Perrings, Charles -- Venail, Patrick -- Narwani, Anita -- Mace, Georgina M -- Tilman, David -- Wardle, David A -- Kinzig, Ann P -- Daily, Gretchen C -- Loreau, Michel -- Grace, James B -- Larigauderie, Anne -- Srivastava, Diane S -- Naeem, Shahid -- England -- Nature. 2012 Jun 6;486(7401):59-67. doi: 10.1038/nature11148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109, USA. bradcard@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Climate Change/statistics & numerical data ; Consensus ; Ecology/methods/trends ; *Extinction, Biological ; *Human Activities ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-05
    Description: Ecosystems exhibit surprising regularities in structure and function across terrestrial and aquatic biomes worldwide. We assembled a global data set for 2260 communities of large mammals, invertebrates, plants, and plankton. We find that predator and prey biomass follow a general scaling law with exponents consistently near (3/4). This pervasive pattern implies that the structure of the biomass pyramid becomes increasingly bottom-heavy at higher biomass. Similar exponents are obtained for community production-biomass relations, suggesting conserved links between ecosystem structure and function. These exponents are similar to many body mass allometries, and yet ecosystem scaling emerges independently from individual-level scaling, which is not fully understood. These patterns suggest a greater degree of ecosystem-level organization than previously recognized and a more predictive approach to ecological theory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatton, Ian A -- McCann, Kevin S -- Fryxell, John M -- Davies, T Jonathan -- Smerlak, Matteo -- Sinclair, Anthony R E -- Loreau, Michel -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):aac6284. doi: 10.1126/science.aac6284. Epub 2015 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada. i.a.hatton@gmail.com. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada. ; Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada. ; Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, United Republic of Tanzania. ; Centre for Biodiversity Theory and Modeling, Experimental Ecology Station, CNRS, 09200 Moulis, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biomass ; *Databases, Factual ; *Food Chain ; Invertebrates ; Mammals ; Plankton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-16
    Description: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isbell, Forest -- Craven, Dylan -- Connolly, John -- Loreau, Michel -- Schmid, Bernhard -- Beierkuhnlein, Carl -- Bezemer, T Martijn -- Bonin, Catherine -- Bruelheide, Helge -- de Luca, Enrica -- Ebeling, Anne -- Griffin, John N -- Guo, Qinfeng -- Hautier, Yann -- Hector, Andy -- Jentsch, Anke -- Kreyling, Jurgen -- Lanta, Vojtech -- Manning, Pete -- Meyer, Sebastian T -- Mori, Akira S -- Naeem, Shahid -- Niklaus, Pascal A -- Polley, H Wayne -- Reich, Peter B -- Roscher, Christiane -- Seabloom, Eric W -- Smith, Melinda D -- Thakur, Madhav P -- Tilman, David -- Tracy, Benjamin F -- van der Putten, Wim H -- van Ruijven, Jasper -- Weigelt, Alexandra -- Weisser, Wolfgang W -- Wilsey, Brian -- Eisenhauer, Nico -- England -- Nature. 2015 Oct 22;526(7574):574-7. doi: 10.1038/nature15374. Epub 2015 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota 55108, USA. ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Institute of Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany. ; Ecological and Environmental Modelling Group, School of Mathematics and Statistics, University College Dublin, Dublin 4, Ireland. ; Centre for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis 09200, France. ; Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland. ; Department of Biogeography, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands. ; Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA. ; Institute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany. ; Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany. ; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK. ; USDA FS, Eastern Forest Environmental Threat Assessment Center, RTP, North Carolina 27709, USA. ; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; Disturbance Ecology, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, D-17487 Greifswald, Germany. ; Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. ; Institute for Plant Sciences, University of Bern, CH-3013 Bern, Switzerland. ; Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universitat Munchen, 85354 Freising, Germany. ; Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan. ; Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027, USA. ; US Department of Agriculture Agricultural Research Service, Grassland, Soil and Water Research Laboratory, Temple, Texas 76502, USA. ; Department of Forest Resources, University of Minnesota Twin Cities, Saint Paul, Minnesota 55108 USA. ; Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2753, Australia. ; UFZ Helmholtz Centre for Environmental Research, Community Ecology, 06120 Halle, Germany. ; Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106 USA. ; Crop and Soil Environmental Sciences, Smyth Hall 0404, Virginia Tech, Blacksburg, Virginia 24061, USA. ; Laboratory of Nematology, Wageningen University and Research Centre, PO Box 8123, 6700 ES Wageningen, The Netherlands. ; Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26466564" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Climate ; Climate Change/statistics & numerical data ; Conservation of Natural Resources ; Disasters/statistics & numerical data ; Droughts ; *Ecosystem ; Grassland ; Human Activities ; *Plant Physiological Phenomena
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...