ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-06
    Description: We present the results of a 135-arcmin 2 search for high-redshift galaxies lensed by 29 clusters from the MAssive Cluster and extended MAssive Cluster Surveys. We use relatively shallow images obtained with the Hubble Space Telescope in four passbands, namely, F 606 W, F 814 W, F 110 W , and F 140 W . We identify 130 F 814 W dropouts as candidates for galaxies at z 6. In order to fit the available broad-band photometry to galaxy spectral energy distribution (SED) templates, we develop a prior for the level of dust extinction at various redshifts. We also investigate the systematic biases incurred by the use of SED-fit software. The fits we obtain yield an estimate of 20 Lyman-break galaxies with photometric redshifts from z ~ 7 to 9. In addition, our survey has identified over 100 candidates with a significant probability of being lower redshift ( z ~ 2) interlopers. We conclude that even as few as four broad-band filters – when combined with fitting the SEDs – are capable of isolating promising objects. Such surveys thus allow one both to probe the bright end ( M 1500 –19) of the high-redshift ultraviolet luminosity function and to identify candidate massive evolved galaxies at lower redshifts.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-29
    Description: Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scherber, Christoph -- Eisenhauer, Nico -- Weisser, Wolfgang W -- Schmid, Bernhard -- Voigt, Winfried -- Fischer, Markus -- Schulze, Ernst-Detlef -- Roscher, Christiane -- Weigelt, Alexandra -- Allan, Eric -- Bessler, Holger -- Bonkowski, Michael -- Buchmann, Nina -- Buscot, Francois -- Clement, Lars W -- Ebeling, Anne -- Engels, Christof -- Halle, Stefan -- Kertscher, Ilona -- Klein, Alexandra-Maria -- Koller, Robert -- Konig, Stephan -- Kowalski, Esther -- Kummer, Volker -- Kuu, Annely -- Lange, Markus -- Lauterbach, Dirk -- Middelhoff, Cornelius -- Migunova, Varvara D -- Milcu, Alexandru -- Muller, Ramona -- Partsch, Stephan -- Petermann, Jana S -- Renker, Carsten -- Rottstock, Tanja -- Sabais, Alexander -- Scheu, Stefan -- Schumacher, Jens -- Temperton, Vicky M -- Tscharntke, Teja -- England -- Nature. 2010 Nov 25;468(7323):553-6. doi: 10.1038/nature09492. Epub 2010 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Georg-August-University Gottingen, Department of Crop Sciences, Agroecology, Grisebachstrasse 6, 37077 Gottingen, Germany. christoph.scherber@agr.uni-goettingen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981010" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Models, Biological ; *Plant Physiological Phenomena ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-16
    Description: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isbell, Forest -- Craven, Dylan -- Connolly, John -- Loreau, Michel -- Schmid, Bernhard -- Beierkuhnlein, Carl -- Bezemer, T Martijn -- Bonin, Catherine -- Bruelheide, Helge -- de Luca, Enrica -- Ebeling, Anne -- Griffin, John N -- Guo, Qinfeng -- Hautier, Yann -- Hector, Andy -- Jentsch, Anke -- Kreyling, Jurgen -- Lanta, Vojtech -- Manning, Pete -- Meyer, Sebastian T -- Mori, Akira S -- Naeem, Shahid -- Niklaus, Pascal A -- Polley, H Wayne -- Reich, Peter B -- Roscher, Christiane -- Seabloom, Eric W -- Smith, Melinda D -- Thakur, Madhav P -- Tilman, David -- Tracy, Benjamin F -- van der Putten, Wim H -- van Ruijven, Jasper -- Weigelt, Alexandra -- Weisser, Wolfgang W -- Wilsey, Brian -- Eisenhauer, Nico -- England -- Nature. 2015 Oct 22;526(7574):574-7. doi: 10.1038/nature15374. Epub 2015 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota 55108, USA. ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Institute of Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany. ; Ecological and Environmental Modelling Group, School of Mathematics and Statistics, University College Dublin, Dublin 4, Ireland. ; Centre for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis 09200, France. ; Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland. ; Department of Biogeography, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands. ; Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA. ; Institute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany. ; Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany. ; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK. ; USDA FS, Eastern Forest Environmental Threat Assessment Center, RTP, North Carolina 27709, USA. ; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; Disturbance Ecology, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, D-17487 Greifswald, Germany. ; Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. ; Institute for Plant Sciences, University of Bern, CH-3013 Bern, Switzerland. ; Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universitat Munchen, 85354 Freising, Germany. ; Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan. ; Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027, USA. ; US Department of Agriculture Agricultural Research Service, Grassland, Soil and Water Research Laboratory, Temple, Texas 76502, USA. ; Department of Forest Resources, University of Minnesota Twin Cities, Saint Paul, Minnesota 55108 USA. ; Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2753, Australia. ; UFZ Helmholtz Centre for Environmental Research, Community Ecology, 06120 Halle, Germany. ; Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106 USA. ; Crop and Soil Environmental Sciences, Smyth Hall 0404, Virginia Tech, Blacksburg, Virginia 24061, USA. ; Laboratory of Nematology, Wageningen University and Research Centre, PO Box 8123, 6700 ES Wageningen, The Netherlands. ; Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26466564" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Climate ; Climate Change/statistics & numerical data ; Conservation of Natural Resources ; Disasters/statistics & numerical data ; Droughts ; *Ecosystem ; Grassland ; Human Activities ; *Plant Physiological Phenomena
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Chromosoma 18 (1966), S. 88-96 
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A presumed XY chromosome pair is described fromt estis squashes from the mesopelagic deep-sea fish Bathylagus wesethi, whose 2N chromosome number was determined as 34-“XY”. Although the metacentric “X-chromosome” is the largest in the entire compliment, the “Y” is the smallest and only acrocentric element. The positive heteropycnosis of the sex elements was not easily distinguishable in the nuclei of first meiotic prophase. Tetraploid nuclei were observed in peripheral supporting cells of the testis. Males of at least two other congeners have similar karyotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 84 (1985), S. 287-294 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Regular observations made over a period of 5 yr in four permanent transects provided data on plant, sea urchin, and fish densities which indicate that two unusually severe winter storms in 1980 (“Storm I”) and 1983 (“Storm II”) had different effects on a southern California kelp-forest community. Storm I removed all canopies of the giant kelp Macrocystis pyrifera, but spared most understory kelps, mainly Pterygophora californica. Hence, the previously large accumulation of detached drift kelp, mostly M. pyrifera, disappeared. Denied their preferred diet of drift kelp, the sea urchins Strongylocentrotus franciscanus and S. purpuratus then emerged from shelters to find alternative food. Without effective predators, they consumed most living plants, including the surviving understory kelps. This weakened the important detritus-based food chain, as indicated indirectly by declining abundances of algal turf and fish (Embiotocidae) that eat small animals living in turf. In 1983, Storm II reversed the process by eliminating exposed urchins, while clearing rock surfaces for widespread kelp settlement and growth. By summer 1984, the kelp grew to maturity to form extensive canopies despite elevated water temperatures during summer and fall of 1983. Thus, severe storms may have vastly different effects on community structure, depending on the state of the community before the disturbance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Descriptive evidence that sandy surfaces and rock ledges inhibit progress of grazing sea urchins prompted an experimental investigation of physical obstacles to urchin movement in a subtidal area of reef and kelp off southern California in 1980. In laboratory experiments, we found that both red (Strongylocentrotus franciscanus) and purple (S. purpuratus) urchins can negotiate sand using their oral spines, although purple urchins are slower and more hesitant to do so. In field experiments, we observed the fates of starved red urchins transported to replicate plots within stands of sand-or rock-based understory kelp (Pterygophora californica). Urchins in rock plots retreated to nearby crevices from where they ate attached kelp. After finding kelp blades, urchins soon disappeared from sand plots because individuals in small groups may have difficulty holding and eating attached kelps on unconsolidated surfaces. In another experiment, red and purple urchins reached kelp on a rock ledge by mounting an artificial ramp. We conclude that by using their tube feet, individuals of both species move best over flat, hard surfaces, although soft substrate may constitute a major barrier only to purple urchins. In the absence of effective predator control, urchins can surmount most sand or rock barriers when water motion subsides. Hence, their ability to coordinate spine movements to negotiate soft substrates may be an adaptation to invade kelp refuges during quiet periods if preferred drift food is unavailable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für die chemische Industrie 14 (1901), S. 785-785 
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für die chemische Industrie 14 (1901), S. 571-571 
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-27
    Description: Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast...
    Keywords: Earth, Atmospheric, and Planetary Sciences
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1966-01-01
    Print ISSN: 0009-5915
    Electronic ISSN: 1432-0886
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...