ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-08
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-08
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-06
    Print ISSN: 0743-7463
    Electronic ISSN: 1520-5827
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.
    Keywords: Man/System Technology and Life Support
    Type: M13-2623 , AIAA International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The International Space Station Water Processor Assembly provides contaminant control and deionization to the Water Recovery System. The Water Processor Assembly presently utilizes sorbent-based Multifiltration Beds and a downstream Catalytic Reactor for these operations. Upgrades and process improvements are desired to improve performance, increase reliability, and decrease consumable resupply. To this end, reverse osmosis membrane separation technologies were evaluated to reduce influent contaminant loads, candidate additives to inhibit wastewater biofilm formation were studied, and life stability testing was completed for a recently developed high-activity catalyst. Evaluation of an adsorption media integration concept was also completed. The performance and applicability of these new technologies within the Water Processor Assembly, as well as their suitability for exploration missions, are discussed herein.
    Keywords: Man/System Technology and Life Support
    Type: M18-6993 , International Conference on Environmental Systems (ICES); Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-257 , M17-6319 , International Conference on Environmental Systems (ICES 2017); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications aim to reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of reverse osmosis membrane technology to reduce the resupply mass of the WPA Multi-filtration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the system, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, and evaluating upgrades to the UPA vacuum pump.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-40 , M17-6116 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Precision Combustion, Inc. (PCI) and NASAs Marshall Space Flight Center (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCIs patented Microlith technology to meet the requirements of future extended human spaceflight explorations. Previous efforts focused on integrating PCIs HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight. Significant improvement was demonstrated over traditional approaches of integrating the HTCO with an external recuperative heat exchanger. While the critical target performance metrics were achieved, the thermal effectiveness of PCIs recuperator remained a potential area of improvement to further reduce the energy requirements of the integrated system. Using the same material combinations and an improved recuperator design, the redesigned prototype has experimentally demonstrated 20 30% reduction (flow dependent) in steady state power consumption compared to the earlier prototype without compromising the destruction efficiency of methane and volatile organic compounds (VOCs). Moreover, design modifications and improvements allow our redesigned prototype to be more easily manufactured compared to traditional brazed plate-fin recuperator designs. The redesigned prototype was delivered to MSFC for validation testing. Here, we report and discuss the performance of the improved prototype HTCO unit with a high efficiency recuperative heat exchanger based on testing at PCI and MSFC. The device is expected to provide a reliable and robust means of disposing of trace levels of methane and VOCs by oxidizing them into carbon dioxide and water in order to maintain clean air in enclosed spaces, such as crewed spacecraft cabins.
    Keywords: Inorganic, Organic and Physical Chemistry; Space Transportation and Safety; Fluid Mechanics and Thermodynamics
    Type: ICES-2017-216 , M17-6236 , International Conference on Environmental Systems (ICES) 2017; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The trace contaminant control system (TCCS) utilizes packed beds of Barnebey-Sutcliffe (B-S) Type 3032 to remove ammonia from ISS (International Space Station) cabin air. BS Type 3032, an acid-impregnated activated carbon, is no longer produced and must be replaced. The adsorptive capacities of Calgon Carbon Ammonasorb II and Molecular Products Chemsorb 1425 for ammonia were measured using moist (40% RH (Relative Humidity)) spacecraft simulated gas streams. These candidate replacement sorbents had 66% greater ammonia removal capacities at low (5 ppm) ammonia concentrations than B-S Type 3032.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2018-253 , KSC-E-DAA-TN58171 , International Conference on Environmental Systems (ICES 2018); Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-233 , M17-6340 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...