ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-07-14
    Description: While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Tanasa, Bogdan -- Tyurina, Oksana V -- Zhou, Tian Yuan -- Gassmann, Reto -- Liu, Wei Ting -- Ohgi, Kenneth A -- Benner, Chris -- Garcia-Bassets, Ivan -- Aggarwal, Aneel K -- Desai, Arshad -- Dorrestein, Pieter C -- Glass, Christopher K -- Rosenfeld, Michael G -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-09/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-18/DK/NIDDK NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-21/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 22;466(7305):508-12. doi: 10.1038/nature09272. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622854" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Cell Cycle/*physiology ; Cell Line ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; HeLa Cells ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/*metabolism ; Host Cell Factor C1/genetics/metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-17
    Description: Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer-promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Dong -- Garcia-Bassets, Ivan -- Benner, Chris -- Li, Wenbo -- Su, Xue -- Zhou, Yiming -- Qiu, Jinsong -- Liu, Wen -- Kaikkonen, Minna U -- Ohgi, Kenneth A -- Glass, Christopher K -- Rosenfeld, Michael G -- Fu, Xiang-Dong -- DK01847/DK/NIDDK NIH HHS/ -- DK074868/DK/NIDDK NIH HHS/ -- DK37949/DK/NIDDK NIH HHS/ -- GM049369/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- NS34934/NS/NINDS NIH HHS/ -- P01 DK074868/DK/NIDDK NIH HHS/ -- P01 DK074868-05/DK/NIDDK NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-10/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-30/DK/NIDDK NIH HHS/ -- R01 DK091183/DK/NIDDK NIH HHS/ -- R01 GM049369/GM/NIGMS NIH HHS/ -- R01 GM049369-17/GM/NIGMS NIH HHS/ -- R01 HG004659/HG/NHGRI NIH HHS/ -- R01 HG004659-03/HG/NHGRI NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 HL065445-12/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-23/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- R37 DK039949-28/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 15;474(7351):390-4. doi: 10.1038/nature10006.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21572438" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line, Tumor ; Cell Lineage ; Dihydrotestosterone/pharmacology ; Down-Regulation ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Genome, Human/genetics ; HEK293 Cells ; Hepatocyte Nuclear Factor 3-alpha/deficiency/genetics/*metabolism ; Histones/metabolism ; Humans ; Kallikreins ; Male ; Prostate-Specific Antigen ; Prostatic Neoplasms/metabolism/pathology ; RNA, Small Interfering/genetics/metabolism ; RNA, Untranslated/*genetics ; Receptors, Androgen/*metabolism ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-06-24
    Description: Multiple enzymatic activities are required for transcriptional initiation. The enzyme DNA topoisomerase II associates with gene promoter regions and can generate breaks in double-stranded DNA (dsDNA). Therefore, it is of interest to know whether this enzyme is critical for regulated gene activation. We report that the signal-dependent activation of gene transcription by nuclear receptors and other classes of DNA binding transcription factors, including activating protein 1, requires DNA topoisomerase IIbeta-dependent, transient, site-specific dsDNA break formation. Subsequent to the break, poly(adenosine diphosphate-ribose) polymerase-1 enzymatic activity is induced, which is required for a nucleosome-specific histone H1-high-mobility group B exchange event and for local changes of chromatin architecture. Our data mechanistically link DNA topoisomerase IIbeta-dependent dsDNA breaks and the components of the DNA damage and repair machinery in regulated gene transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ju, Bong-Gun -- Lunyak, Victoria V -- Perissi, Valentina -- Garcia-Bassets, Ivan -- Rose, David W -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1798-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, School of Medicine, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794079" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Immunoprecipitation ; DNA/*metabolism ; DNA Damage ; DNA Repair ; DNA Topoisomerases, Type II/*metabolism ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; Enzyme Inhibitors/pharmacology ; Estradiol/pharmacology ; Estrogen Receptor alpha/metabolism ; Histones/metabolism ; Humans ; Membrane Proteins/genetics ; Nucleosomes/metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Presenilin-2 ; Promoter Regions, Genetic ; Response Elements ; Thiobarbiturates/pharmacology ; Topoisomerase II Inhibitors ; Transcription Factors/metabolism ; *Transcription, Genetic ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...