ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 61 (1992), S. 2036-2038 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Optoelectronic modulators and couplers frequently require high-aspect ratio feature definition in thick (≥10 μm) gold. The common process used involves up plating with a photoresist guide. Theory argues that feature boundaries would be degraded due to both diffractive spreading and scattering of the incident light in the resist. This is not observed and near-90° sidewalls appear obtainable. This letter demonstrates this effect and proposes an explanation for it.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8102
    Keywords: I/O systems ; formal design ; theorem-proving ; model checking
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract The transaction ordering problem of the original PCI 2.1 standard bus specification violates the desired correctness property of maintaining the so called ‘Producer/Consumer’ relationship between writers and readers of data. This violation stems mainly from the so called completion stealing problem, first identified and solved by Corella et al. [4], and supported by a formal paper and pencil argument. In this paper, we develop a flexible graph theory library in PVS for modeling computer bus structures, formalize the PCI 2.1 protocol containing the solution of [4] in it, and mechanically prove the absence of completion stealing. Next, we define the Producer/Consumer property in PVS and sketch its mechanical proof. Noting the complexity of this proof effort (unfinished as yet), we explore a combination of theorem proving and model-checking in which the model used for model-checking is made tractable by exploiting the formal theorems established during theorem-proving as well as several intuitively justified assumptions. The theorem-proving infrastructure we have built for modeling CPU interconnect structures is highly reusable. Our work is one example of a natural division of labor between theorem-proving and model-checking in tackling system-level verification problems under realistic time budgets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Formal methods in system design 16 (2000), S. 5-6 
    ISSN: 1572-8102
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of VLSI signal processing systems for signal, image, and video technology 7 (1994), S. 33-45 
    ISSN: 1573-109X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Asynchronous/Self-Timed designs are beginning to attract attention as promising means of dealing with the complexity of modern VLSI technology. In this article, we present our views on why asynchronous systems matter. We then present details of our high level synthesis tool SHILPA that can automatically synthesize asynchronous circuits from descriptions in our concurrent programming language,hopCP. We outline many of the novel features of hopCP and also sketch how these constructs are compiled into asynchronous circuits, and then focus on the high level optimizations employed by SHILPA, includingconcurrent guard evaluation and concurrent process decomposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 54–63, doi:10.5670/oceanog.2015.81.
    Description: Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
    Description: This work was supported by the US Office of Naval Research (N00014-10-1-0273 and N00014-15-1-2285 to BDC, N00014-10-1-0273 to GG, N00014-14-1-0065 to ALG, N00014-10-1-0468 to TBS, N0001-10-1-0273 to LRC, N00014-10-1-0308 to CML, N00014-10-1-0397 and N00014-10-1-0273 to BM, N00014-10-1-0397 to RCL, and N00014-10-1-0268 to SRJ) and the Taiwan Ministry of Science and Technology. Yang, Chang, and Mensah are supported by the Taiwan Ministry of Science and Technology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2011. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24 no. 4 (2011): 110–121, doi:10.5670/oceanog.2011.99.
    Description: An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7–8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.
    Description: We thank the National Science Council of Taiwan as well as the Office of Naval Research for generous support of this effort.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2013. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 26, no. 1 (2013): 66–79, doi:10.5670/oceanog.2013.06.
    Description: Numerous observational and modeling studies of ocean circulation surrounding Taiwan have reported occurrences of cold water and doming of isotherms (called the cold dome) that result in the formation of coastal upwelling on the northeastern Taiwan shelf. We use a high-resolution (1/24°) ocean model based on the Massachusetts Institute of Technology general circulation model to study the evolution of this distinct shelf-slope circulation phenomenon. We performed a number of model simulations spanning a five-year period (2004–2008) using realistic atmospheric forcing and initial and open boundary conditions. The model solutions were compared with satellite measurements of sea surface height (SSH), sea surface temperature (SST), and historical temperature and salinity observations. The model showed a realistically shaped cold dome with a diameter of ~ 100 km and temperature of ~ 3°C below the ambient shelf waters at 50 m depth. The occurrences of simulated cold dome events appeared to be connected with the seasonal variability of the Kuroshio Current. The model simulations showed more upwelling events during spring and summer when the core of the Kuroshio tends to migrate away from the east coast of Taiwan, compared to fall and winter when the core of the Kuroshio is generally found closer to the east coast of Taiwan. The model also reproduced weak cyclonic circulation associated with the upwelling off northeastern Taiwan. We analyzed the spatio-temporal variability of the cold dome using the model solution as a proxy and designed a "cold dome index" based on the temperature at 50 m depth averaged over a 0.5° × 0.5° box centered at 25.5°N, 122°E. The cold dome index correlates with temperature at 50 m depth in a larger region, suggesting the spatial extent of the cold dome phenomenon. The index had correlation maxima of 0.78 and 0.40 for simulated SSH and SST, respectively, in and around the cold dome box region, and we hypothesize that it is a useful indicator of upwelling off northeastern Taiwan. In addition, both correlation and composite analysis between the temperature at 50 m depth and the East Taiwan Channel transport showed no cold dome events during low-transport events (often in winter) and more frequent cold dome events during high-transport events (often in summer). The simulated cold dome events had time scales of about two weeks, and their centers aligned roughly along a northeastward line starting from the northeastern tip of Taiwan.
    Description: This work was supported by Office of Naval Research grant N00014-08- 1-0587.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(1), (2021): E99-E122, https://doi.org/10.1175/BAMS-D-19-0005.1.
    Description: The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.
    Description: The development of the Red Sea modeling system is being supported by the Virtual Red Sea Initiative and the Competitive Research Grants (CRG) program from the Office of Sponsored Research at KAUST, Saudi Aramco Company through the Saudi ARAMCO Marine Environmental Center at KAUST, and by funds from KAEC, NEOM, and RSP through Beacon Development Company at KAUST.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 2238–2262, doi:10.1002/2013JC009004.
    Description: The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.
    Description: Partial support for this effort was provided by the Saudi Aramco Marine Environmental Research Center at KAUST.
    Description: 2014-10-14
    Keywords: Red Sea ; MITgcm ; Overturning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...