ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-20
    Description: The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 +/- 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 +/- 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quintana, Elisa V -- Barclay, Thomas -- Raymond, Sean N -- Rowe, Jason F -- Bolmont, Emeline -- Caldwell, Douglas A -- Howell, Steve B -- Kane, Stephen R -- Huber, Daniel -- Crepp, Justin R -- Lissauer, Jack J -- Ciardi, David R -- Coughlin, Jeffrey L -- Everett, Mark E -- Henze, Christopher E -- Horch, Elliott -- Isaacson, Howard -- Ford, Eric B -- Adams, Fred C -- Still, Martin -- Hunter, Roger C -- Quarles, Billy -- Selsis, Franck -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):277-80. doi: 10.1126/science.1249403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744370" target="_blank"〉PubMed〈/a〉
    Keywords: Earth (Planet) ; Exobiology ; Extraterrestrial Environment ; *Planets ; *Stars, Celestial ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-31
    Description: Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 +/- 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 +/- 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 +/- 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Demory, Brice-Olivier -- Gillon, Michael -- de Wit, Julien -- Madhusudhan, Nikku -- Bolmont, Emeline -- Heng, Kevin -- Kataria, Tiffany -- Lewis, Nikole -- Hu, Renyu -- Krick, Jessica -- Stamenkovic, Vlada -- Benneke, Bjorn -- Kane, Stephen -- Queloz, Didier -- England -- Nature. 2016 Apr 14;532(7598):207-9. doi: 10.1038/nature17169. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK. ; Institut d'Astrophysique et de Geophysique, Universite of Liege, allee du 6 Aout 17, 4000 Liege, Belgium. ; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. ; NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium. ; University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern, Switzerland. ; Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK. ; Space Telescope Science Institute, Baltimore, Maryland 21218, USA. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA. ; Spitzer Science Center, MS 220-6, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California 91125, USA. ; Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027283" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-16
    Description: Ultracool dwarfs (UCD; T eff  〈 ~3000 K) cool to settle on the main sequence after ~1 Gyr. For brown dwarfs, this cooling never stops. Their habitable zones (HZ) thus sweeps inward at least during the first Gyr of their lives. Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to enter the HZ. It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry worlds. Here, we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations. We address the whole range of UCDs but also focus on the planets recently found around the 0.08 M dwarf TRAPPIST-1. Despite assumptions maximizing the FUV photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amount of water in the HZ of UCDs, with a sweet spot in the 0.04–0.06 M range. We also studied the TRAPPIST-1 system using observed constraints on the XUV flux. We find that TRAPPIST-1b and c may have lost as much as 15 Earth oceans and planet d – which might be inside the HZ – may have lost less than 1 Earth ocean. Depending on their initial water contents, they could have enough water to remain habitable. TRAPPIST-1 planets are key targets for atmospheric characterization and could provide strong constraints on the water erosion around UCDs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2020-03-01
    Description: Transit timing variations (TTVs) can be a very efficient way of constraining masses and eccentricities of multi-planet systems. Recent measurements of the TTVs of TRAPPIST-1 have led to an estimate of the masses of the planets, enabling an estimate of their densities and their water content. A recent TTV analysis using data obtained in the past two years yields a 34 and 13% increase in mass for TRAPPIST-1b and c, respectively. In most studies to date, a Newtonian N-body model is used to fit the masses of the planets, while sometimes general relativity is accounted for. Using the Posidonius N-body code, in this paper we show that in the case of the TRAPPIST-1 system, non-Newtonian effects might also be relevant to correctly model the dynamics of the system and the resulting TTVs. In particular, using standard values of the tidal Love number k2 (accounting for the tidal deformation) and the fluid Love number k2f (accounting for the rotational flattening) leads to differences in the TTVs of TRAPPIST-1b and c that are similar to the differences caused by general relativity. We also show that relaxing the values of tidal Love number k2 and the fluid Love number k2f can lead to TTVs which differ by as much as a few 10 s on a 3−4-yr timescale, which is a potentially observable level. The high values of the Love numbers needed to reach observable levels for the TTVs could be achieved for planets with a liquid ocean, which if detected might then be interpreted as a sign that TRAPPIST-1b and TRAPPIST-1c could have a liquid magma ocean. For TRAPPIST-1 and similar systems the models to fit the TTVs should potentially account for general relativity, for the tidal deformation of the planets, for the rotational deformation of the planets, and to a lesser extent for the rotational deformation of the star, which would add up to 7 × 2 + 1 = 15 additional free parameters in the case of TRAPPIST-1.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-01
    Description: Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-01
    Description: Context. The surface angular velocity evolution of low-mass stars is now globally understood and the main physical mechanisms involved in it are observationally quite constrained. However, while the general behaviour of these mechanisms is grasped, their theoretical description is still under ongoing work. This is the case, for instance, about the description of the physical process that extracts angular momentum from the radiative core, which could be described by several theoretical candidates. Additionally, recent observations showed anomalies in the rotation period distribution of open cluster, main sequence, early K-type stars that cannot be reproduced by current angular momentum evolution models. Aims. In this work, we study the parameter space of star-planet system’s configurations to investigate if including the tidal star-planet interaction in angular momentum evolution models could reproduce the anomalies of this rotation period distribution. Methods. To study this effect, we use a parametric angular momentum evolution model that allows for core-envelope decoupling and angular momentum extraction by magnetized stellar wind that we coupled to an orbital evolution code where we take into account the torque due to the tides raised on the star by the planet. We explore different stellar and planetary configurations (stellar mass from 0.5 to 1.0 M⊙ and planetary mass from 10 M⊕ to 13 Mjup) to study their effect on the planetary orbital and stellar rotational evolution. Results. The stellar angular momentum is the most impacted by the star-planet interaction when the planet is engulfed during the early main sequence phase. Thus, if a close-in Jupiter-mass planet is initially located at around 50% of the stellar corotation radius, a kink in the rotational period distribution opens around late and early K-type stars during the early main sequence phase. Conclusions. Tidal star-planet interactions can create a kink in the rotation period distribution of low-mass stars, which could possibly account for unexpected scatter seen in the rotational period distribution of young stellar clusters.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...