ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-09
    Description: The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H2O gas, with a nominal line-of-sight column density of 0.90 ± 0.23 × 1016 cm−2 (upper limit of 1.0 × 1016 cm−2). The upper limit for N2 is 5 × 1013 cm−2, or
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-09-27
    Description: The Galileo Extreme Ultraviolet Spectrometer obtained a spectrum of Venus atmospheric emissions in the 55.0- to 125.0-nanometer (nm) wavelength region. Emissions of helium (58.4 nm), ionized atomic oxygen (83.4 nm), and atomic hydrogen (121.6 nm), as well as a blended spectral feature of atomic hydrogen (Lyman-beta) and atomic oxygen (102.5 nm), were observed at 3.5-nm resolution. During the Galileo spacecraft cruise from Venus to Earth, Lyman-alpha emission from solar system atomic hydrogen (121.6 nm) was measured. The dominant source of the Lyman-alpha emission is atomic hydrogen from the interstellar medium. A model of Galileo observations at solar maximum indicates a decrease in the solar Lyman-alpha flux near the solar poles. A strong day-to-day variation also occurs with the 27-day periodicity of the rotation of the sun.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hord, C W -- Barth, C A -- Esposito, L W -- McClintock, W E -- Pryor, W R -- Simmons, K E -- Stewart, A I -- Thomas, G E -- Ajello, J M -- Lane, A L -- West, R W -- Sandel, B R -- Broadfoot, A L -- Hunten, D M -- Shemansky, D E -- New York, N.Y. -- Science. 1991 Sep 27;253(5027):1548-50.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17784100" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-09-20
    Description: Neutral sodium emissions encircling Jupiter exhibit an intricate and variable structure that is well matched by a simple loss process from Io's atmosphere. These observations imply that fast neutral sodium is created locally in the Io plasma torus, both near Io and as much as 8 hours downstream. Sodium-bearing molecules may be present in Io's upper atmosphere, where they are ionized by the plasma torus and swept downstream. The molecular ions dissociate and dissociatively recombine on a short time scale, releasing neutral fragments into escape trajectories from Jupiter. This theory explains a diverse set of sodium observations, and it implies that molecular reactions (particularly electron impact ionization and dissociation) are important at the top of Io's atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, N M -- Trauger, J T -- Wilson, J K -- Brown, D I -- Evans, R W -- Shemansky, D E -- New York, N.Y. -- Science. 1991 Sep 20;253(5026):1394-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17793479" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-18
    Description: Neutral oxygen in the saturnian system shows variability, and the total number of oxygen atoms peaks at 4 x 10(34). Saturn's aurora brightens in response to solar-wind forcing, and the auroral spectrum resembles Jupiter's. Phoebe's surface shows variable water-ice content, and the data indicate it originated in the outer solar system. Saturn's rings also show variable water abundance, with the purest ice in the outermost A ring. This radial variation is consistent with initially pure water ice bombarded by meteors, but smaller radial structures may indicate collisional transport and recent renewal events in the past 10(7) to 10(8) years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esposito, Larry W -- Colwell, Joshua E -- Larsen, Kristopher -- McClintock, William E -- Stewart, A Ian F -- Hallett, Janet Tew -- Shemansky, Donald E -- Ajello, Joseph M -- Hansen, Candice J -- Hendrix, Amanda R -- West, Robert A -- Keller, H Uwe -- Korth, Axel -- Pryor, Wayne R -- Reulke, Ralf -- Yung, Yuk L -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1251-5. Epub 2004 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Colorado, Laboratory for Atmospheric and Space Physics, 234 Innovation Drive, Boulder, CO 80303-7814, USA. larry.esposito@lasp.colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604361" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; *Hydrogen ; *Ice ; *Oxygen ; *Saturn ; Spacecraft ; Spectrum Analysis ; Ultraviolet Rays ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-05-14
    Description: The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the extinction of photons from two stars by the atmosphere of Titan during the Titan flyby. Six species were identified and measured: methane, acetylene, ethylene, ethane, diacetylene, and hydrogen cyanide. The observations cover altitudes from 450 to 1600 kilometers above the surface. A mesopause is inferred from extraction of the temperature structure of methane, located at 615 km with a temperature minimum of 114 kelvin. The asymptotic kinetic temperature at the top of the atmosphere determined from this experiment is 151 kelvin. The higher order hydrocarbons and hydrogen cyanide peak sharply in abundance and are undetectable below altitudes ranging from 750 to 600 km, leaving methane as the only identifiable carbonaceous molecule in this experiment below 600 km.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shemansky, Donald E -- Stewart, A Ian F -- West, Robert A -- Esposito, Larry W -- Hallett, Janet T -- Liu, Xianming -- New York, N.Y. -- Science. 2005 May 13;308(5724):978-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Aerospace Engineering, University of Southern California, University Park, Los Angeles, CA 90089, USA. dons@hippolyta.usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890872" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylene ; Atmosphere ; Ethane ; Ethylenes ; Extraterrestrial Environment ; *Hydrocarbons, Acyclic ; *Hydrogen Cyanide ; Mathematics ; Methane ; *Saturn ; *Spacecraft ; Spectrum Analysis ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-12-15
    Description: Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Atreya, S K -- Bertaux, J L -- Blamont, J E -- Dessler, A J -- Donahue, T M -- Forrester, W T -- Hall, D T -- Herbert, F -- Holberg, J B -- Hunter, D M -- Krasnopolsky, V A -- Linick, S -- Lunine, J I -- McConnell, J C -- Moos, H W -- Sandel, B R -- Schneider, N M -- Shemansky, D E -- Smith, G R -- Strobel, D F -- Yelle, R V -- New York, N.Y. -- Science. 1989 Dec 15;246(4936):1459-66.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17756000" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1979-06-01
    Description: Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (〉/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Belton, M J -- Takacs, P Z -- Sandel, B R -- Shemansky, D E -- Holberg, J B -- Ajello, J M -- Atreya, S K -- Donahue, T M -- Moos, H W -- Bertaux, J L -- Blamont, J E -- Strobel, D F -- McConnell, J C -- Dalgarno, A -- Goody, R -- McElroy, M B -- New York, N.Y. -- Science. 1979 Jun 1;204(4396):979-82.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17800434" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1981-04-10
    Description: The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Sandel, B R -- Shemansky, D E -- Holberg, J B -- Smith, G R -- Strobel, D F -- McConnell, J C -- Kumar, S -- Hunten, D M -- Atreya, S K -- Donahue, T M -- Moos, H W -- Bertaux, J L -- Blamont, J E -- Pomphrey, R B -- Linick, S -- New York, N.Y. -- Science. 1981 Apr 10;212(4491):206-11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17783831" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1982-01-29
    Description: Combined analysis of helium (584 angstroms) airglow and the atmospheric occultations of the star delta Scorpii imply a vertical mixing parameter in Saturn's upper atmosphere of K (eddy diffusion coefficient) approximately 8 x 10(7) square centimeters per second, an order of magnitude more vigorous than mixing in Jupiter's upper atmosphere. Atmospheric H(2) band absorption of starlight yields a preliminary temperature of 400 K in the exosphere and a temperature near the homopause of approximately 200 K. The energy source for the mid-latitude H(2) band emission still remains a puzzle. Certain auroral emissions can be fully explained in terms of electron impact on H(2), and auroral morphology suggests a link between the aurora and the Saturn kilometric radiation. Absolute optical depths have been determined for the entire C ring andparts of the A and B rings. A new eccentric ringlet has been detected in the C ring. The extreme ultraviolet reflectance of the rings is fairly uniform at 3.5 to 5 percent. Collisions may control the distribution of H in Titan's H torus, which has a total vertical extent of approximately 14 Saturn radii normal to the orbit plane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandel, B R -- Shemansky, D E -- Broadfoot, A L -- Holberg, J B -- Smith, G R -- McConnell, J C -- Strobel, D F -- Atreya, S K -- Donahue, T M -- Moos, H W -- Hunten, D M -- Pomphrey, R B -- Linick, S -- New York, N.Y. -- Science. 1982 Jan 29;215(4532):548-53.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17771276" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1979-11-23
    Description: Extreme ultraviolet spectral observations of the Jovian planetary system made during the Voyager 2 encounter have extended our knowledge of many of the phenomena and physical processes discovered by the Voyager 1 ultraviolet spectrometer. In the 4 months between encounters, the radiation from Io's plasma torus has increased in intensity by a factor of about 2. This change was accompanied by a decrease in plasma temperature of about 30 percent. The high-latitude auroral zones have been positively associated with the magnetic projection of the plasma torus onto the planet. Emission in molecular hydrogen bands has been detected from the equatorial regions of Jupiter, indicating planetwide electron precipitation. Hydrogen Lyman alpha from the dark side of the planet has been measured at an intensity of about 1 kilorayleigh. An observation of the occultation of alpha Leonis by Jupiter was carried out successfully and the data are being analyzed in detail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandel, B R -- Shemansky, D E -- Broadfoot, A L -- Bertaux, J L -- Blamont, J E -- Belton, M J -- Ajello, J M -- Holberg, J B -- Atreya, S K -- Donahue, T M -- Moos, H W -- Strobel, D F -- McConnell, J C -- Dalgarno, A -- Goody, R -- McElroy, M B -- Takacs, P Z -- New York, N.Y. -- Science. 1979 Nov 23;206(4421):962-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17733915" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...