ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-12-15
    Description: Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Atreya, S K -- Bertaux, J L -- Blamont, J E -- Dessler, A J -- Donahue, T M -- Forrester, W T -- Hall, D T -- Herbert, F -- Holberg, J B -- Hunter, D M -- Krasnopolsky, V A -- Linick, S -- Lunine, J I -- McConnell, J C -- Moos, H W -- Sandel, B R -- Schneider, N M -- Shemansky, D E -- Smith, G R -- Strobel, D F -- Yelle, R V -- New York, N.Y. -- Science. 1989 Dec 15;246(4936):1459-66.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17756000" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-26
    Description: Just before earth passed through Saturn's ring plane on 10 August 1995, the Hubble Space Telescope Faint Object Spectrograph detected ultraviolet fluorescent emissions from a tenuous atmosphere of OH molecules enveloping the rings. Brightnesses decrease with increasing distance above the rings, implying a scale height of about 0.45 Saturn radii (Rs). A spatial scan 0.28Rs above the A and B rings indicates OH column densities of about 10(13) cm(-2) and number densities of up to 700 cm(-3). Saturn's rings must produce roughly 10(25) to 10(29) OH molecules per second to maintain the observed OH distribution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, D T -- Feldman, P D -- Holberg, J B -- McGrath, M A -- New York, N.Y. -- Science. 1996 Apr 26;272(5261):516-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614798" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Hydroxyl Radical/*analysis ; *Saturn
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-04
    Description: Author(s): J. C. Berengut, V. V. Flambaum, A. Ong, J. K. Webb, John D. Barrow, M. A. Barstow, S. P. Preval, and J. B. Holberg We propose a new probe of the dependence of the fine-structure constant α on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope... [Phys. Rev. Lett. 111, 010801] Published Wed Jul 03, 2013
    Keywords: General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1979-06-01
    Description: Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (〉/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Belton, M J -- Takacs, P Z -- Sandel, B R -- Shemansky, D E -- Holberg, J B -- Ajello, J M -- Atreya, S K -- Donahue, T M -- Moos, H W -- Bertaux, J L -- Blamont, J E -- Strobel, D F -- McConnell, J C -- Dalgarno, A -- Goody, R -- McElroy, M B -- New York, N.Y. -- Science. 1979 Jun 1;204(4396):979-82.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17800434" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1981-04-10
    Description: The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Sandel, B R -- Shemansky, D E -- Holberg, J B -- Smith, G R -- Strobel, D F -- McConnell, J C -- Kumar, S -- Hunten, D M -- Atreya, S K -- Donahue, T M -- Moos, H W -- Bertaux, J L -- Blamont, J E -- Pomphrey, R B -- Linick, S -- New York, N.Y. -- Science. 1981 Apr 10;212(4491):206-11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17783831" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1982-01-29
    Description: Combined analysis of helium (584 angstroms) airglow and the atmospheric occultations of the star delta Scorpii imply a vertical mixing parameter in Saturn's upper atmosphere of K (eddy diffusion coefficient) approximately 8 x 10(7) square centimeters per second, an order of magnitude more vigorous than mixing in Jupiter's upper atmosphere. Atmospheric H(2) band absorption of starlight yields a preliminary temperature of 400 K in the exosphere and a temperature near the homopause of approximately 200 K. The energy source for the mid-latitude H(2) band emission still remains a puzzle. Certain auroral emissions can be fully explained in terms of electron impact on H(2), and auroral morphology suggests a link between the aurora and the Saturn kilometric radiation. Absolute optical depths have been determined for the entire C ring andparts of the A and B rings. A new eccentric ringlet has been detected in the C ring. The extreme ultraviolet reflectance of the rings is fairly uniform at 3.5 to 5 percent. Collisions may control the distribution of H in Titan's H torus, which has a total vertical extent of approximately 14 Saturn radii normal to the orbit plane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandel, B R -- Shemansky, D E -- Broadfoot, A L -- Holberg, J B -- Smith, G R -- McConnell, J C -- Strobel, D F -- Atreya, S K -- Donahue, T M -- Moos, H W -- Hunten, D M -- Pomphrey, R B -- Linick, S -- New York, N.Y. -- Science. 1982 Jan 29;215(4532):548-53.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17771276" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1983-10-07
    Description: The Voyager spacecraft observed a narrow, eccentric ringlet in the Maxwell gap (1.45 Saturn radii) in Saturn's rings. Intercomparison of the Voyager imaging, photopolarimeter, ultraviolet spectrometer, and radio science observations yields results not available from individual observations. The width of the ringlet varies from about 30 to about 100 kilometers, its edges are sharp on a radial scale 〈 1 kilometer, and its opacity exhibits a double peak near the center. The shape and width of the ringlet are consistent with a set of uniformly precessing, confocal ellipses with foci at Saturn's center of mass. The ringlet precesses as a unit at a rate consistent with the known dynamical oblateness of Saturn; the lack of differential precession across the ringlet yields a ringlet mass of about 5 x 10(18) grams. The ratio of surface mass density to particle cross-sectional area is about five times smaller than values obtained elsewhere in the Saturn ring system, indicating a relatively larger fraction of small particles. Also, comparison of the measured transmission of the ringlet at radio, visible, and ultraviolet wavelengths indicates that about half of the total extinction is due to particles smaller than 1 centimeter in radius, in contrast even with nearby regions of the C ring. However, the color and brightness of the ringlet material are not measurably different from those of nearby C ring particles. We find this ringlet is similar to several of the rings of Uranus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esposito, L W -- Borderies, N -- Goldreich, P -- Cuzzi, J N -- Holberg, J B -- Lane, A L -- Pomphrey, R B -- Terrile, R J -- Lissauer, J J -- Marouf, E A -- Tyler, G L -- New York, N.Y. -- Science. 1983 Oct 7;222(4619):57-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17810092" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1979-11-23
    Description: Extreme ultraviolet spectral observations of the Jovian planetary system made during the Voyager 2 encounter have extended our knowledge of many of the phenomena and physical processes discovered by the Voyager 1 ultraviolet spectrometer. In the 4 months between encounters, the radiation from Io's plasma torus has increased in intensity by a factor of about 2. This change was accompanied by a decrease in plasma temperature of about 30 percent. The high-latitude auroral zones have been positively associated with the magnetic projection of the plasma torus onto the planet. Emission in molecular hydrogen bands has been detected from the equatorial regions of Jupiter, indicating planetwide electron precipitation. Hydrogen Lyman alpha from the dark side of the planet has been measured at an intensity of about 1 kilorayleigh. An observation of the occultation of alpha Leonis by Jupiter was carried out successfully and the data are being analyzed in detail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandel, B R -- Shemansky, D E -- Broadfoot, A L -- Bertaux, J L -- Blamont, J E -- Belton, M J -- Ajello, J M -- Holberg, J B -- Atreya, S K -- Donahue, T M -- Moos, H W -- Strobel, D F -- McConnell, J C -- Dalgarno, A -- Goody, R -- McElroy, M B -- Takacs, P Z -- New York, N.Y. -- Science. 1979 Nov 23;206(4421):962-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17733915" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1986-07-04
    Description: Data from solar and stellar occultations of Uranus indicate a temperature of about 750 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane and acetylene in the lower levels. The ultraviolet spectrum of the sunlit hemisphere is dominated by emissions from atomic and molecular hydrogen, which are kmown as electroglow emissions. The energy source for these emissions is unknown, but the spectrum implies excitation by low-energy electrons (modeled with a 3-electron-volt Maxwellian energy distribution). The major energy sink for the electrons is dissociation of molecular hydrogen, producing hydrogen atoms at a rate of 10(29) per second. Approximately half the atoms have energies higher than the escape energy. The high temperature of the atmosphere, the small size of Uranus, and the number density of hydrogen atoms in the thermosphere imply an extensive thermal hydrogen corona that reduces the orbital lifetime of ring particles and biases the size distribution toward larger particles. This corona is augmented by the nonthermal hydrogen atoms associated with the electroglow. An aurora near the magnetic pole in the dark hemisphere arises from excitation of molecular hydrogen at the level where its vertical column abundance is about 10(20) per square centimeter with input power comparable to that of the sunlit electroglow (approximately 2x10(11) watts). An initial estimate of the acetylene volume mixing ratio, as judged from measurements of the far ultraviolet albedo, is about 2 x 10(-7) at a vertical column abundance of molecular hydrogen of 10(23) per square centimeter (pressure, approximately 0.3 millibar). Carbon emissions from the Uranian atmosphere were also detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Broadfoot, A L -- Herbert, F -- Holberg, J B -- Hunten, D M -- Kumar, S -- Sandel, B R -- Shemansky, D E -- Smith, G R -- Yelle, R V -- Strobel, D F -- Moos, H W -- Donahue, T M -- Atreya, S K -- Bertaux, J L -- Blamont, J E -- McConnell, J C -- Dessler, A J -- Linick, S -- Springer, R -- New York, N.Y. -- Science. 1986 Jul 4;233(4759):74-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17812892" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 297 (1982), S. 115-120 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Voyager 2 UV spectrometer observed a stellar occultation by the rings of Saturn, which located ring features with an accuracy of 12 km. A high-resolution (3 km) optical depth atlas of the rings shows at least nine features, including four density wave patterns, identified with satellite ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...