ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and coniferous forests are considered. Using an integrated validation strategy, analyses of the representativeness of the surface heterogeneity under both dormant and snow-covered situations are performed to decide whether direct comparisons between ground measurements and 500-m satellite observations can be made or whether finer spatial resolution airborne or spaceborne data are required to scale the results at each location. Landsat Enhanced Thematic Mapper Plus (ETM +) data are used to generate finer scale representations of albedo at each location to fully link ground data with satellite data. In general, results indicate the root mean square errors (RMSEs) are less than 0.030 over spatially representative sites of agriculture/grassland during the dormant periods and less than 0.050 during the snow-covered periods for MCD43A albedo products. For forest, the RMSEs are less than 0.020 during the dormant period and 0.025 during the snow-covered periods. However, a daily retrieval strategy is necessary to capture ephemeral snow events or rapidly changing situations such as the spring snow melt.
    Keywords: Geosciences (General); Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN16405 , Remote Sensing of Environment; 140; 60-77
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Foliage profiles retrieved froma scanning, terrestrial, near-infrared (1064 nm), full-waveformlidar, the Echidna Validation Instrument (EVI), agree well with those obtained from an airborne, near-infrared, full-waveform, large footprint lidar, the Lidar Vegetation Imaging Sensor (LVIS). We conducted trials at 5 plots within a conifer stand at Sierra National Forest in August, 2008. Foliage profiles retrieved from these two lidar systems are closely correlated (e.g., r = 0.987 at 100 mhorizontal distances) at large spatial coverage while they differ significantly at small spatial coverage, indicating the apparent scanning perspective effect on foliage profile retrievals. Alsowe noted the obvious effects of local topography on foliage profile retrievals, particularly on the topmost height retrievals. With a fine spatial resolution and a small beam size, terrestrial lidar systems complement the strengths of the airborne lidars by making a detailed characterization of the crowns from a small field site, and thereby serving as a validation tool and providing localized tuning information for future airborne and spaceborne lidar missions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN9983 , Remote Sensing of Environment; 136; 330–341
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN9223 , Remote Sensing of Environment ; 118; 50-59
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5991.2012 , Remote Sensing of Environment; 117; 264-280
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.7177.2012 , Remote Sensing Environment; 125; 73-79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.4407.2011
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The variogram function used in geostatistical analysis is a useful statistic in the analysis of remotely sensed images. Using the results derived by Jupp et al. (1988), the basic second-order, or covariance, properties of scenes modeled by simple disks of varying size and spacing after imaging into disk-shaped pixels are analyzed to explore the relationship betwee image variograms and discrete object scene structure. The models provide insight into the nature of real images of the earth's surface and the tools for a complete analysis of the more complex case of three-dimensional illuminated discrete-object images.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); 27; 247-258
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The primary goal of this research was to improve monitoring of temperate forest change using remote sensing. In this context, change includes both clearing of forest due to effects such as fire, logging, or land conversion and forest growth and succession. The Landsat 7 ETM+ proved an extremely valuable research tool in this domain. The Landsat 7 program has generated an extremely valuable transformation in the land remote sensing community by making high quality images available for relatively low cost. In addition, the tremendous improvements in the acquisition strategy greatly improved the overall availability of remote sensing images. I believe that from an historical prespective, the Landsat 7 mission will be considered extremely important as the improved image availability will stimulate the use of multitemporal imagery at resolutions useful for local to regional mapping. Also, Landsat 7 has opened the way to global applications of remote sensing at spatial scales where important surface processes and change can be directly monitored. It has been a wonderful experience to have participated on the Landsat 7 Science Team. The research conducted under this project led to contributions in four general domains: I. Improved understanding of the information content of images as a function of spatial resolution; II. Monitoring Forest Change and Succession; III. Development and Integration of Advanced Analysis Methods; and IV. General support of the remote sensing of forests and environmental change. This report is organized according to these topics. This report does not attempt to provide the complete details of the research conducted with support from this grant. That level of detail is provided in the 16 peer reviewed journal articles, 7 book chapters and 5 conference proceedings papers published as part of this grant. This report attempts to explain how the various publications fit together to improve our understanding of how forests are changing and how to monitor forest change with remote sensing. There were no new inventions that resulted from this grant.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: A method that measures the spatial structure of images as a function of spatial resolution is presented for selecting the appropriate scale for remote sensing. Graphs are obtained by imaging the scene at fine resolution and then collapsing the image to successively coarser resolutions while calculating the local variance. For the spatial resolution of SPOT and TM imagery, local image variance is relatively high for forested and urban/suburban environments, indicating that information-extraction techniques using texture, context, and mixture modeling are appropriate for these sensor systems. For agricultural environments where local variance is low, more traditional classifiers are appropriate.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Remote Sensing of Environment (ISSN 0034-4257); 21; 311-332
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Theoretical and empirical studies of variograms are presented. The sensitivity of variograms is studied through varyig parameters of scene models both in calculating explicit variograms and in simulating images. It is found that the heights of variograms are related to the proportion of an area covered by objects. It is shown that the range of influence of a variogram is related to the size of the objects in the scene and that the shape of the variogram becomes more rounded as the variance in the size distribution of objects increases. In the second part, empirically calculated variograms from real digital images are used to demonstrate these theoretical findings. These calculated variograms also show the periodicity in ground scenes and reveal anisotropy.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Remote Sensing of Environment (ISSN 0034-4257); 25; 323-379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...