ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Ecosystem carbon budgets depend on there being good representative surface flux observations for all land use types during the entire diurnal cycle. In calm conditions that often occur at night, especially in areas of small roughness (such as pastures), ecosystem respiration rate is poorly measured using the eddy covariance (EC) technique. Nocturnal vertical profiles of temperature, humidity and winds were observed using tethered balloon soundings in a pasture in the eastern Amazon during two campaigns in 2001. The site is characterized by very weak winds at night, so that there is insufficient turbulence for the EC technique to determine fluxes accurately. To compensate, the time evolution of the profiles is used to determine surface fluxes at early morning and these are compared with those observed by EC at a nearby micrometeorological tower. The nocturnal boundary layer thickness h is determined as the height to which the surface fluxes must converge so that energy budget closure is achieved. The estimated values range from 30 m, around 22:00 hours LST, to more than 100 m just before dawn. These are in good agreement with the observed thickness of a frequently observed fog layer during the middle of the night. During the early portion of the night, when the accumulation layer is shallow, there is appreciable decrease of dCO2/dt with height. On calm nights, CO2 accumulation rate is larger near the surface than at higher levels. On windier nights, this accumulation rate is vertically uniform. Hence, extrapolation of tower profiles for estimating fluxes must be done carefully. Although uncertainties remain large, an alternate approach to the EC method is described for measuring nighttime surface CO2 fluxes under stable atmospheric conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: To study how changing agricultural practices in the eastern Amazon affect carbon, heat and water exchanges, a 20 m tower was installed in a field in August 2000. Measurements include turbulent fluxes (momentum, heat, water vapor, and CO2) using the eddy covariance (EC) approach, soil heat flux, wind, and scalar profiles (T, q, and CO2), soil moisture content, terrestrial, total solar radiation, and photosynthetically active radiation (PAR, 400–700 nm). At the beginning of the measurements, in September 2000, the field was a pasture. On November 2001, the pasture was burned, plowed, and planted in upland (nonirrigated) rice.Calm nights were the norm in this site. Anomalously low values of net ecosystem exchange (NEE) were found using the EC method, even when the common criterion u*〈0.2 m s−1 was used to identify and exclude poor performance nights. We observed more plausible values of NEE using criterion u*〈0.08 m s−1, indicating that the criterion must be revised downward for flow over surfaces smoother than forests. However, even using the lower threshold, u* was lower than this limit for 82% of nights, and this led to nocturnal respiration underestimates. We compensate for this difficulty by estimating the respiration rate using the nocturnal boundary layer budget method.Land-use change from pasture to rice cultivation strongly affected both diurnal rates of turbulent exchange but also the pattern of seasonal variation. Seasonal wet and dry season differences in vegetation state were clearly detected in the albedo and PAR-albedo. These reflectivity changes were accompanied by modified net radiative flux, turbulent heat flux and evaporation rates. The highest evaporation rate was observed during the rice crop, when the field had total evaporation approximately half the precipitation input, less than that of the surrounding forest. Effects of the land-cover changes were also detected in the carbon budget. For the pasture, the maximum CO2 uptake occurred in May, appreciably delayed from the start of the rainy season. After the field was plowed and the soil was exposed and there was efflux of CO2 to the atmosphere day and night for an extended period. Highest values of carbon uptake occurred during the rice plantation. Although the upland rice took up carbon at double the rate of the pasture that it replaced, the field was left fallow for much of the year, during the dry season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 22 (1982), S. 431-451 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Model formulation of the balance between surface heat and moisture fluxes and subsidence that determines the state of the mixed layer is used to estimate cooling and drying rates in the mixed layer above the tropical ocean based on GATE observations. Estimated cooling rates are comparable to observed radiative cooling rates for thick mixed layers characteristic of undisturbed conditions but are up to five times larger for shallow mixed layers observed during disturbed periods. The additional cooling and drying in the mixed layer needed to maintain shallow, cool mixed layers is hypothesized to be the net result of an assemblage of downdrafts. A new scaling scheme for non-dimensionalizing the mixed-layer thermodynamic budget equations is introduced. The ratio of subsidence at the top of the mixed layer to the product of the entrainment coefficient, a bulk aerodynamic transfer coefficient, and the surface-layer wind speed is shown theoretically to be a fundamental descriptor of the mixed-layer environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 63 (1993), S. 141-162 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Observations of the diurnal evolution of the planetary boundary layer over the Amazon rain forest, made at sites close to the confluence of the Solimões and Negro rivers (approximately at 3°S, 60°W) near Manaus, Amazonas, Brazil, show the existence of a diurnal rotation of the wind near the surface and the frequent presence of low-level nocturnal wind maxima. These circulations are shown to be plausibly explained as elements of a river and land breeze circulation induced by the thermal contrast between the rivers and the adjacent forest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 67 (1994), S. 75-96 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Observed boundary-layer circulations close to the confluence of the Negro and Solimões rivers near Manaus in the Brazilian equatorial Amazon forest were presented in Part I. These are shown through linear analysis and second-order turbulence modelling to be aspects of a river breeze superimposed on the basic flow. Linear analysis is presented to estimate the spatial structure and intensity of a breeze induced by a river with width and thermal contrast similar to that observed in the central Amazon. It is found that observed thermal contrasts are sufficient to produce a river breeze that can be perceived more than 20 km inland daily. A one-dimensional second-order closure model is used to show that observed nocturnal low-level wind maxima and diurnal surface wind rotation are aspects of a river breeze interacting with the seasonally-varying mean flow. At night, partial decoupling of the surface from the lower atmosphere allows the land breeze to be expressed as a low-level wind maximum. During the day, convective mixing communicates upper level winds to the surface during rapid morning boundary-layer growth. Rotation of the surface wind follows as the river breeze circulation is then superimposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 69 (1994), S. 43-69 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-04-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-09
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-06-16
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-20
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...