ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-08-07
    Description: The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, J A -- Arvidson, R -- Bell, J F 3rd -- Cabrol, N A -- Carr, M H -- Christensen, P -- Crumpler, L -- Des Marais, D J -- Ehlmann, B L -- Farmer, J -- Golombek, M -- Grant, F D -- Greeley, R -- Herkenhoff, K -- Li, R -- McSween, H Y -- Ming, D W -- Moersch, J -- Rice, J W Jr -- Ruff, S -- Richter, L -- Squyres, S -- Sullivan, R -- Weitz, C -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):807-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA. grantj@nasm.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297659" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Volcanic Eruptions ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-04
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Marais, D J Des -- d'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A H -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1698-703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576602" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-08-07
    Description: Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, J F 3rd -- Squyres, S W -- Arvidson, R E -- Arneson, H M -- Bass, D -- Blaney, D -- Cabrol, N -- Calvin, W -- Farmer, J -- Farrand, W H -- Goetz, W -- Golombek, M -- Grant, J A -- Greeley, R -- Guinness, E -- Hayes, A G -- Hubbard, M Y H -- Herkenhoff, K E -- Johnson, M J -- Johnson, J R -- Joseph, J -- Kinch, K M -- Lemmon, M T -- Li, R -- Madsen, M B -- Maki, J N -- Malin, M -- McCartney, E -- McLennan, S -- McSween, H Y Jr -- Ming, D W -- Moersch, J E -- Morris, R V -- Dobrea, E Z Noe -- Parker, T J -- Proton, J -- Rice, J W Jr -- Seelos, F -- Soderblom, J -- Soderblom, L A -- Sohl-Dickstein, J N -- Sullivan, R J -- Wolff, M J -- Wang, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):800-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cornell University, Ithaca, NY 14853-6801, USA. jfb8@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297658" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron Compounds ; *Mars ; Minerals ; Silicates ; Solar System ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...