ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-07-07
    Description: In the visual system, the establishment of the anteroposterior and dorsoventral axes in the retina and tectum during development is important for topographic retinotectal projection. We identified chick Ventroptin, an antagonist of bone morphogenetic protein 4 (BMP-4), which is mainly expressed in the ventral retina, not only with a ventral high-dorsal low gradient but also with a nasal high-temporal low gradient at later stages. Misexpression of Ventroptin altered expression patterns of several topographic genes in the retina and projection of the retinal axons to the tectum along both axes. Thus, the topographic retinotectal projection appears to be specified by the double-gradient molecule Ventroptin along the two axes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakuta, H -- Suzuki, R -- Takahashi, H -- Kato, A -- Shintani, T -- Iemura Si -- Yamamoto, T S -- Ueno, N -- Noda, M -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji-cho, Okazaki 444-8585, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441185" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/*antagonists & inhibitors/genetics/metabolism ; Chick Embryo ; Cloning, Molecular ; Electroporation ; Embryo, Nonmammalian/cytology/metabolism ; Eye Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation, Developmental ; Gene Library ; Humans ; In Situ Hybridization ; Mice ; Microinjections ; Molecular Sequence Data ; *Morphogenesis ; Nerve Tissue Proteins ; Precipitin Tests ; Protein Binding ; Protein Isoforms/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Retina/*embryology/*metabolism ; Sequence Alignment ; Surface Plasmon Resonance ; Xenopus Proteins ; Xenopus laevis/embryology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-08-28
    Description: DFN3, an X chromosome-linked nonsyndromic mixed deafness, is caused by mutations in the BRN-4 gene, which encodes a POU transcription factor. Brn-4-deficient mice were created and found to exhibit profound deafness. No gross morphological changes were observed in the conductive ossicles or cochlea, although there was a dramatic reduction in endocochlear potential. Electron microscopy revealed severe ultrastructural alterations in cochlear spiral ligament fibrocytes. The findings suggest that these fibrocytes, which are mesenchymal in origin and for which a role in potassium ion homeostasis has been postulated, may play a critical role in auditory function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minowa, O -- Ikeda, K -- Sugitani, Y -- Oshima, T -- Nakai, S -- Katori, Y -- Suzuki, M -- Furukawa, M -- Kawase, T -- Zheng, Y -- Ogura, M -- Asada, Y -- Watanabe, K -- Yamanaka, H -- Gotoh, S -- Nishi-Takeshima, M -- Sugimoto, T -- Kikuchi, T -- Takasaka, T -- Noda, T -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10464101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cochlear Duct/*metabolism/pathology ; *DNA-Binding Proteins ; Deafness/genetics/*metabolism/pathology ; Ear, Inner/metabolism/pathology ; Ear, Middle/pathology ; Endolymph/metabolism ; Evoked Potentials, Auditory, Brain Stem ; Female ; Gene Expression ; Gene Targeting ; Genetic Linkage ; In Situ Hybridization ; Ion Transport ; Male ; Membrane Potentials ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; *Nerve Tissue Proteins ; POU Domain Factors ; Potassium/*metabolism ; Transcription Factors/genetics/*metabolism ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-10-06
    Description: Familial adenomatous polyposis coli (FAP) is a disease characterized by the development of multiple colorectal adenomas, and affected individuals carry germline mutations in the APC gene. With the use of a conditional gene targeting system, a mouse model of FAP was created that circumvents the embryonic lethality of Apc deficiency and directs Apc inactivation specifically to the colorectal epithelium. loxP sites were inserted into the introns around Apc exon 14, and the resultant mutant allele (Apc580S) was introduced into the mouse germline. Mice homozygous for Apc580S were normal; however, upon infection of the colorectal region with an adenovirus encoding the Cre recombinase, the mice developed adenomas within 4 weeks. The adenomas showed deletion of Apc exon 14, indicating that the loss of Apc function was caused by Cre-loxP-mediated recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, H -- Toyama, K -- Shioya, H -- Ito, M -- Hirota, M -- Hasegawa, S -- Matsumoto, H -- Takano, H -- Akiyama, T -- Toyoshima, K -- Kanamaru, R -- Kanegae, Y -- Saito, I -- Nakamura, Y -- Shiba, K -- Noda, T -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311916" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Adenomatous Polyposis Coli Protein ; Adenoviridae/genetics ; Animals ; Colon/metabolism ; Cytoskeletal Proteins/biosynthesis ; Disease Models, Animal ; Exons ; Female ; Frameshift Mutation ; Gene Deletion ; *Gene Targeting ; *Genes, APC ; Genetic Vectors ; Germ-Line Mutation ; Homozygote ; Integrases/genetics/metabolism ; Introns ; Male ; Mice ; Mice, Inbred C57BL ; Recombination, Genetic ; *Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-10-14
    Description: Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saitoh, Tatsuya -- Fujita, Naonobu -- Jang, Myoung Ho -- Uematsu, Satoshi -- Yang, Bo-Gie -- Satoh, Takashi -- Omori, Hiroko -- Noda, Takeshi -- Yamamoto, Naoki -- Komatsu, Masaaki -- Tanaka, Keiji -- Kawai, Taro -- Tsujimura, Tohru -- Takeuchi, Osamu -- Yoshimori, Tamotsu -- Akira, Shizuo -- AI070167/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):264-8. doi: 10.1038/nature07383. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849965" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Animals ; Autophagy/*genetics ; Carrier Proteins/*genetics ; Chimera ; Colitis/chemically induced/immunology ; Dextran Sulfate/pharmacology ; Female ; Gene Expression Regulation/*drug effects ; Interleukin-1beta/*biosynthesis/metabolism ; Lipopolysaccharides/*pharmacology ; Macrophages/*drug effects/*metabolism ; Mice ; Mice, Inbred C57BL ; Mutation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-13
    Description: Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748827/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748827/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, Yasushi -- Shinya, Kyoko -- Kiso, Maki -- Watanabe, Tokiko -- Sakoda, Yoshihiro -- Hatta, Masato -- Muramoto, Yukiko -- Tamura, Daisuke -- Sakai-Tagawa, Yuko -- Noda, Takeshi -- Sakabe, Saori -- Imai, Masaki -- Hatta, Yasuko -- Watanabe, Shinji -- Li, Chengjun -- Yamada, Shinya -- Fujii, Ken -- Murakami, Shin -- Imai, Hirotaka -- Kakugawa, Satoshi -- Ito, Mutsumi -- Takano, Ryo -- Iwatsuki-Horimoto, Kiyoko -- Shimojima, Masayuki -- Horimoto, Taisuke -- Goto, Hideo -- Takahashi, Kei -- Makino, Akiko -- Ishigaki, Hirohito -- Nakayama, Misako -- Okamatsu, Masatoshi -- Takahashi, Kazuo -- Warshauer, David -- Shult, Peter A -- Saito, Reiko -- Suzuki, Hiroshi -- Furuta, Yousuke -- Yamashita, Makoto -- Mitamura, Keiko -- Nakano, Kunio -- Nakamura, Morio -- Brockman-Schneider, Rebecca -- Mitamura, Hiroshi -- Yamazaki, Masahiko -- Sugaya, Norio -- Suresh, M -- Ozawa, Makoto -- Neumann, Gabriele -- Gern, James -- Kida, Hiroshi -- Ogasawara, Kazumasa -- Kawaoka, Yoshihiro -- HHNSN266200700010C/NS/NINDS NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- HHSN272200800060C/AI/NIAID NIH HHS/ -- R01 AI069274/AI/NIAID NIH HHS/ -- R01 AI069274-04/AI/NIAID NIH HHS/ -- U19 AI070503/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1021-5. doi: 10.1038/nature08260.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19672242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/immunology ; Antiviral Agents/pharmacology ; Cell Line ; Dogs ; Female ; Ferrets/virology ; HN Protein/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/pathogenicity/*physiology ; Lung/immunology/pathology/virology ; Macaca fascicularis/immunology/virology ; Male ; Mice ; Mice, Inbred BALB C ; Neutralization Tests ; Orthomyxoviridae Infections/immunology/transmission/virology ; Primate Diseases/pathology/virology ; Swine/*virology ; Swine Diseases/pathology/virology ; Swine, Miniature/virology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-10-01
    Description: Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nogi, Terukazu -- Yasui, Norihisa -- Mihara, Emiko -- Matsunaga, Yukiko -- Noda, Masanori -- Yamashita, Naoya -- Toyofuku, Toshihiko -- Uchiyama, Susumu -- Goshima, Yoshio -- Kumanogoh, Atsushi -- Takagi, Junichi -- England -- Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-10-01
    Description: Type 2 and type 3 inositol 1,4,5-trisphosphate receptors (IP3R2 and IP3R3) are intracellular calcium-release channels whose physiological roles are unknown. We show exocrine dysfunction in IP3R2 and IP3R3 double knock-out mice, which caused difficulties in nutrient digestion. Severely impaired calcium signaling in acinar cells of the salivary glands and the pancreas in the double mutants ascribed the secretion deficits to a lack of intracellular calcium release. Despite a normal caloric intake, the double mutants were hypoglycemic and lean. These results reveal IP3R2 and IP3R3 as key molecules in exocrine physiology underlying energy metabolism and animal growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Futatsugi, Akira -- Nakamura, Takeshi -- Yamada, Maki K -- Ebisui, Etsuko -- Nakamura, Kyoko -- Uchida, Keiko -- Kitaguchi, Tetsuya -- Takahashi-Iwanaga, Hiromi -- Noda, Tetsuo -- Aruga, Jun -- Mikoshiba, Katsuhiko -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2232-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calcium Oscillation, International Cooperative Research Project, Japan Science and Technology Agency, Tokyo 108-0071, Japan. afutatsu@brain.riken.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195467" target="_blank"〉PubMed〈/a〉
    Keywords: Amylases/secretion ; Animals ; Body Weight ; Calcium/metabolism ; Calcium Channels/genetics/*physiology ; Calcium Signaling ; Carbachol/pharmacology ; Digestion ; Eating ; Energy Intake ; *Energy Metabolism ; Inositol 1,4,5-Trisphosphate Receptors ; Lipase/secretion ; Mice ; Mice, Knockout ; Pancreas, Exocrine/cytology/*secretion ; Receptors, Cytoplasmic and Nuclear/genetics/*physiology ; Saliva/*secretion ; Salivation ; Submandibular Gland/metabolism/secretion ; Trypsinogen/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-12
    Description: Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Tokiko -- Kiso, Maki -- Fukuyama, Satoshi -- Nakajima, Noriko -- Imai, Masaki -- Yamada, Shinya -- Murakami, Shin -- Yamayoshi, Seiya -- Iwatsuki-Horimoto, Kiyoko -- Sakoda, Yoshihiro -- Takashita, Emi -- McBride, Ryan -- Noda, Takeshi -- Hatta, Masato -- Imai, Hirotaka -- Zhao, Dongming -- Kishida, Noriko -- Shirakura, Masayuki -- de Vries, Robert P -- Shichinohe, Shintaro -- Okamatsu, Masatoshi -- Tamura, Tomokazu -- Tomita, Yuriko -- Fujimoto, Naomi -- Goto, Kazue -- Katsura, Hiroaki -- Kawakami, Eiryo -- Ishikawa, Izumi -- Watanabe, Shinji -- Ito, Mutsumi -- Sakai-Tagawa, Yuko -- Sugita, Yukihiko -- Uraki, Ryuta -- Yamaji, Reina -- Eisfeld, Amie J -- Zhong, Gongxun -- Fan, Shufang -- Ping, Jihui -- Maher, Eileen A -- Hanson, Anthony -- Uchida, Yuko -- Saito, Takehiko -- Ozawa, Makoto -- Neumann, Gabriele -- Kida, Hiroshi -- Odagiri, Takato -- Paulson, James C -- Hasegawa, Hideki -- Tashiro, Masato -- Kawaoka, Yoshihiro -- AI058113/AI/NIAID NIH HHS/ -- AI099274/AI/NIAID NIH HHS/ -- HHSN266200700010C/AI/NIAID NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- T32 AI078985/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):551-5. doi: 10.1038/nature12392. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/pharmacology ; Cells, Cultured ; Chickens/virology ; DNA-Directed RNA Polymerases/antagonists & inhibitors ; Dogs ; Enzyme Inhibitors/pharmacology ; Female ; Ferrets/virology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology ; *Influenza A virus/chemistry/drug effects/isolation & purification/pathogenicity ; Influenza, Human/drug therapy/*virology ; Macaca fascicularis/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Monkey Diseases/pathology/virology ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae Infections/pathology/transmission/*virology ; Quail/virology ; Swine/virology ; Swine, Miniature/virology ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-21
    Description: Spatial asymmetries in neural connectivity have an important role in creating basic building blocks of neuronal processing. A key circuit module of directionally selective (DS) retinal ganglion cells is a spatially asymmetric inhibitory input from starburst amacrine cells. It is not known how and when this circuit asymmetry is established during development. Here we photostimulate mouse starburst cells targeted with channelrhodopsin-2 (refs 6-8) while recording from a single genetically labelled type of DS cell. We follow the spatial distribution of synaptic strengths between starburst and DS cells during early postnatal development before these neurons can respond to a physiological light stimulus, and confirm connectivity by monosynaptically restricted trans-synaptic rabies viral tracing. We show that asymmetry develops rapidly over a 2-day period through an intermediate state in which random or symmetric synaptic connections have been established. The development of asymmetry involves the spatially selective reorganization of inhibitory synaptic inputs. Intriguingly, the spatial distribution of excitatory synaptic inputs from starburst cells is significantly more symmetric than that of the inhibitory inputs at the end of this developmental period. Our work demonstrates a rapid developmental switch from a symmetric to asymmetric input distribution for inhibition in the neural circuit of a principal cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yonehara, Keisuke -- Balint, Kamill -- Noda, Masaharu -- Nagel, Georg -- Bamberg, Ernst -- Roska, Botond -- England -- Nature. 2011 Jan 20;469(7330):407-10. doi: 10.1038/nature09711. Epub 2010 Dec 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21170022" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Amacrine Cells/metabolism/physiology/radiation effects ; Animals ; Female ; Light ; Male ; Mice ; *Models, Neurological ; *Motion ; Motion Perception/*physiology ; Neural Inhibition/*physiology ; Neural Pathways/*physiology ; Neuroanatomical Tract-Tracing Techniques ; Photic Stimulation ; Rabies virus/genetics/isolation & purification/physiology ; Retina/cytology/growth & development/*physiology ; Retinal Ganglion Cells/physiology ; Rhodopsin/genetics/metabolism ; Synapses/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...