ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-07-20
    Description: Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABAA)- and N-methyl D-aspartate (NMDA)-activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibited NMDA responses equally in the two lines. Thus, genes coding for the GABAA receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wafford, K A -- Burnett, D M -- Dunwiddie, T V -- Harris, R A -- AA03527/AA/NIAAA NIH HHS/ -- AA06399/AA/NIAAA NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):291-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, Denver.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/analogs & derivatives/pharmacology ; Brain/*metabolism ; Chloride Channels ; Chlorides/*physiology ; Diazepam/pharmacology ; Ethanol/*pharmacology ; Female ; Ion Channels/drug effects/physiology ; Membrane Proteins/*physiology ; Mice ; Mice, Inbred Strains ; Microinjections ; N-Methylaspartate ; Oocytes/*drug effects/*physiology ; RNA, Messenger/administration & dosage/genetics ; Receptors, GABA-A/drug effects/*genetics ; Xenopus ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-04
    Description: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oh, Seung Wook -- Harris, Julie A -- Ng, Lydia -- Winslow, Brent -- Cain, Nicholas -- Mihalas, Stefan -- Wang, Quanxin -- Lau, Chris -- Kuan, Leonard -- Henry, Alex M -- Mortrud, Marty T -- Ouellette, Benjamin -- Nguyen, Thuc Nghi -- Sorensen, Staci A -- Slaughterbeck, Clifford R -- Wakeman, Wayne -- Li, Yang -- Feng, David -- Ho, Anh -- Nicholas, Eric -- Hirokawa, Karla E -- Bohn, Phillip -- Joines, Kevin M -- Peng, Hanchuan -- Hawrylycz, Michael J -- Phillips, John W -- Hohmann, John G -- Wohnoutka, Paul -- Gerfen, Charles R -- Koch, Christof -- Bernard, Amy -- Dang, Chinh -- Jones, Allan R -- Zeng, Hongkui -- England -- Nature. 2014 Apr 10;508(7495):207-14. doi: 10.1038/nature13186. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Allen Institute for Brain Science, Seattle, Washington 98103, USA [2]. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlases as Topic ; Axons/physiology ; Brain/*anatomy & histology/*cytology ; Cerebral Cortex/cytology ; *Connectome ; Corpus Striatum/cytology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neuroanatomical Tract-Tracing Techniques ; Thalamus/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-08
    Description: Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1alpha subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1alpha phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Novarino, Gaia -- El-Fishawy, Paul -- Kayserili, Hulya -- Meguid, Nagwa A -- Scott, Eric M -- Schroth, Jana -- Silhavy, Jennifer L -- Kara, Majdi -- Khalil, Rehab O -- Ben-Omran, Tawfeg -- Ercan-Sencicek, A Gulhan -- Hashish, Adel F -- Sanders, Stephan J -- Gupta, Abha R -- Hashem, Hebatalla S -- Matern, Dietrich -- Gabriel, Stacey -- Sweetman, Larry -- Rahimi, Yasmeen -- Harris, Robert A -- State, Matthew W -- Gleeson, Joseph G -- K08 MH087639/MH/NIMH NIH HHS/ -- K08MH087639/MH/NIMH NIH HHS/ -- P01 HD070494/HD/NICHD NIH HHS/ -- P01HD070494/HD/NICHD NIH HHS/ -- P30 NS047101/NS/NINDS NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R01 NS041537/NS/NINDS NIH HHS/ -- R01 NS048453/NS/NINDS NIH HHS/ -- R01NS048453/NS/NINDS NIH HHS/ -- R25 MH077823/MH/NIMH NIH HHS/ -- RC2 MH089956/MH/NIMH NIH HHS/ -- RC2MH089956/MH/NIMH NIH HHS/ -- T32MH018268/MH/NIMH NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):394-7. doi: 10.1126/science.1224631. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. gnovarino@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956686" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/*administration & ; dosage/deficiency/*genetics ; Adolescent ; Amino Acids, Branched-Chain/administration & dosage/blood/deficiency ; Animals ; Arginine/genetics ; Autistic Disorder/*diet therapy/enzymology/*genetics ; Base Sequence ; Brain/metabolism ; Child ; Child, Preschool ; Diet ; Epilepsy/*diet therapy/enzymology/*genetics ; Female ; Homozygote ; Humans ; Intellectual Disability/diet therapy/enzymology/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Pedigree ; Phosphorylation ; Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1978-03-17
    Description: Calcium, other divalent cations, and calcium antagonists were tested for their ability to alter ethanol-induced sleeping time, hypothermia, and behavioral intoxication in mice and rats. Calcium given intraventricularly significantly enhanced sleeping time and behavioral intoxication in a dose-related manner. The ionophores X537A and A23187 accentuated the effect of a low dose of calcium, whereas the calcium chelators EDTA and EGTA decreased sleeping time. Calcium also enhanced tertiary butanol- and chloral hydrate-induced sleeping time. The effects of cations on ethanol-induced hypothermia were less significant. The results suggest the existence of a central calcium pool that is involved in ethanol intoxication in rodents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, C K -- Tyler, T D -- Harris, R A -- New York, N.Y. -- Science. 1978 Mar 17;199(4334):1219-21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/343251" target="_blank"〉PubMed〈/a〉
    Keywords: Alcoholic Intoxication/*physiopathology ; Animals ; Body Temperature Regulation/drug effects ; Calcimycin/pharmacology ; Calcium/antagonists & inhibitors/*physiology ; Cations, Divalent ; Dose-Response Relationship, Drug ; Drug Synergism ; Female ; Humans ; Lasalocid/pharmacology ; Male ; Mice ; Movement/drug effects ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1985-05-31
    Description: gamma-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in mammalian brain, is believed to act by increasing membrane conductance of chloride ions. In this study it was found that GABA agonists increased the uptake of chloride-36 by cell-free membrane preparations from mouse brain. This influx was rapid (less than 5 seconds), and 13 micromolar GABA produced a half-maximal effect. The GABA antagonists (bicuculline and picrotoxin) blocked the effect of GABA, whereas pentobarbital enhanced the action. This may be the first demonstration of functional coupling among GABA and barbiturate receptors and chloride channels in isolated membranes. The technique should facilitate biochemical and pharmacological studies of GABA receptor-effector coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harris, R A -- Allan, A M -- AA03527/AA/NIAAA NIH HHS/ -- AA06399/AA/NIAAA NIH HHS/ -- New York, N.Y. -- Science. 1985 May 31;228(4703):1108-10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2581319" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/drug effects ; Brain/*physiology ; Cell-Free System ; Chlorides/*physiology ; Ion Channels/*physiology ; Membranes/physiology ; Mice ; Receptors, GABA-A/drug effects/*physiology ; Receptors, Neurotransmitter/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...