ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-04
    Description: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oh, Seung Wook -- Harris, Julie A -- Ng, Lydia -- Winslow, Brent -- Cain, Nicholas -- Mihalas, Stefan -- Wang, Quanxin -- Lau, Chris -- Kuan, Leonard -- Henry, Alex M -- Mortrud, Marty T -- Ouellette, Benjamin -- Nguyen, Thuc Nghi -- Sorensen, Staci A -- Slaughterbeck, Clifford R -- Wakeman, Wayne -- Li, Yang -- Feng, David -- Ho, Anh -- Nicholas, Eric -- Hirokawa, Karla E -- Bohn, Phillip -- Joines, Kevin M -- Peng, Hanchuan -- Hawrylycz, Michael J -- Phillips, John W -- Hohmann, John G -- Wohnoutka, Paul -- Gerfen, Charles R -- Koch, Christof -- Bernard, Amy -- Dang, Chinh -- Jones, Allan R -- Zeng, Hongkui -- England -- Nature. 2014 Apr 10;508(7495):207-14. doi: 10.1038/nature13186. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Allen Institute for Brain Science, Seattle, Washington 98103, USA [2]. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlases as Topic ; Axons/physiology ; Brain/*anatomy & histology/*cytology ; Cerebral Cortex/cytology ; *Connectome ; Corpus Striatum/cytology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neuroanatomical Tract-Tracing Techniques ; Thalamus/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-10
    Description: A preceding paper by Guidry et al 2013 Comput. Sci. Disc. 6 015001 demonstrated that explicit asymptotic methods generally work much better for extremely stiff reaction networks than has previously been shown in the literature. There we showed that for systems well removed from equilibrium, explicit asymptotic methods can rival standard implicit codes in speed and accuracy for solving extremely stiff differential equations. In this paper, we continue the investigation of systems well removed from equilibrium by examining quasi-steady-state (QSS) methods as an alternative to asymptotic methods. We show that for systems well removed from equilibrium, QSS methods also can compete with, or even exceed, standard implicit methods in speed, even for extremely stiff networks, and in many cases give a somewhat better integration speed than for asymptotic methods. As for asymptotic methods, we will find that QSS methods give correct results, but with a non-competitive ...
    Print ISSN: 1749-4699
    Electronic ISSN: 1749-4680
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-07
    Description: Enzymes function by stabilizing reaction transition states; therefore, comparison of the transition states of enzymatic and nonenzymatic model reactions can provide insight into biological catalysis. Catalysis of RNA 2′-O-transphosphorylation by ribonuclease A is proposed to involve electrostatic stabilization and acid/base catalysis, although the structure of the rate-limiting transition state is...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 37 (1965), S. 1127-1132 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 145 (1995), S. 21-31 
    ISSN: 1432-1424
    Keywords: Osmotic shock ; Capacitance ; K conductance ; Contractility ; Volume ; Blebs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) 〉60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 μF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM, N-ethylmaleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane stores may account for the ability to withstand diverse mechanical stresses. Mechanical robustness such as that displayed here could be an asset during neuronal out-growth or regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 145 (1995), S. 33-47 
    ISSN: 1432-1424
    Keywords: Membrane dynamics ; Osmotic perturbations ; Mechanical stress ; Cell adhesion ; Cytomechanics ; Rhodamine dextran
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In cultured Lymnaea stagnalis neurons, osmolarity increases (upshocks) rapidly elicited large membranous dilations that could be dislodged and pushed around inside the cell with a microprobe. Subsequent osmolarity decreases (downshocks) caused these vacuole-like dilations (VLDs) to disappear. Additional upshock/downshock perturbations resulted in repeated appearance/disappearance (formation/reversal) of VLDs at discrete sites. Confocal microscopy indicated that VLDs formed as invaginations of the substrate-adherent surface of the neuron: extracellular rhodamine-dextran entered VLDs as they formed and was expelled during reversal. Our standard VLD-inducing perturbation was: 2–4 min downshock to distilled water, upshock to normal saline. However, a wide range of other osmotic perturbations (involving osmolarities up to 3.5x normal, perturbations with or without Ca2+, replacement of ions by sucrose) were also used. We concluded that mechanical, not chemical, aspects of the osmo-mechanical shocks drove the VLD formation and reversal dynamics and that extracellular Ca2+ was not required. Following a standard perturbation, VLDs grew from invisible to their full diameter (〉10 μm) in just over a minute. Over the next 0.5–3 hr in normal saline, neurons recovered. Recovery eliminated any visible VLDs and was accompanied by cytoplasmic turmoil around the VLDs. Recovery was prevented by cytochalasin B, brefeldin A and N-ethylmaleimide but not by nocodazole. In striking contrast, these drugs did not prevent repeated VLD formation and reversal in response to standard osmo-mechanical perturbations; VLD disappearance during reversal and during recovery are different. The osmo-mechanical changes that elicited VLDs may, in an exaggerated fashion, mimic tension changes in extending and retracting neuntes. In this context we postulate: (a) the trafficking or disposition of membrane between internal stores and plasma membrane is mechano sensitive, (b) normally, this mechanosensitivity provides an “on demand” system by which neurons can accommodate stretch/release perturbations and control cell shape but, (c) given sudden extreme mechanical stimuli, it yields VLDs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 117 (1926), S. 792-793 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] AN important result of the development of Moseley's **o atomic number rule has been the impetus it has given to the search for missing elements. It is true that later arrangements of the Periodic Table indicated that eka-csesium, eka- and dwi-manganese, and eka-iodine were missing, but there were ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0008-6215
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Boston, MA, USA : Blackwell Science Inc
    Restoration ecology 9 (2001), S. 0 
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...