ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 17 (1978), S. 1091-1100 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The Mettler/Paar precision density meter DMA-02D has been used to determine the concentration of saturated solutions of amino acids at 20.0, 25.0, and 29.8 °C. The technique has proven itself an elegant and precise method. The solubilities of all of the amino acids with the exceptions of proline, lysine, and cystine have been measured. The Gibbs free energies of transfer from saturated water solution to 1M Na2SO4 and to 1M Gu·HCL along with the van't Hoff heats and entropies have been calculated. The van't Hoff heats have been compared with the calorimetrically determined heats for some of the amino acids. The Lumry-Rajender relation between the entropy and heats has been observed. The process of transfer of the amino acids from water to the solvents is primarily enthalpic rather than entropic.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 412-420 
    ISSN: 0006-3592
    Keywords: Amycolatopsis orientalis ; vancomycin production ; chemostat culture ; phosphate inhibition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Production of the glycopeptide antibiotic vancomycin by two Amycolatopsis orientalis strains was examined in batch shake flask culture in a semidefined medium with peptone as the nitrogen source. Different growth and production profiles were observed with the two strains; specific production (Yp/x) was threefold higher with strain ATCC 19795 than with strain NCIMB 12945. A defined medium with amino acids as the nitrogen source was developed by use of the Plackett-Burman statistical screening method. This technique identified certain amino acids (glycine, phenylalanine, tyrosine, and arginine) that gave significant increased specific production, whereas phosphate was identified as inhibitory for high specific vancomycin production. Experiments made with the improved medium and strain ATCC 19795 showed that vancomycin production kinetics were either growth dissociated or growth associated, depending on the amino acid concentration. In chemostat culture at a constant dilution rate (0.087 h-1), specific vancomycin production rate (qvancomycin) decreased linearly as the medium phosphate concentration was increased from 2 to 8 mM. In both phosphate and glucose limited chemostats, qvancomycin was a function of specific growth rate; the maximum value was observed at D = 0.087 h-1 (52% of the maximum specific growth rate). Under phosphate limited growth conditions, qvancomycin was threefold higher (0.37 mg/g dry weight/h) than under glucose limitation (0.12 mg/g dry weight/h). © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 12 (1970), S. 273-290 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The concept of a “critical oxygen concentration” is conventionally considered to hold for the submerged aerobic fermentation of glucose to gluconic acid. Above the critical level the fermentation rate is supposedly independent of oxygen concentration. In this work it is shown that, at a given agitation rate, the fermentation is independent of dissolved oxygen when above the critical. However, an increase in the agitation rate results in an increase in the fermentation rate. This increase was shown to be accompanied by an increase in the gluconolactone concentration in the broth. Gluconolactone, an intermediate in the reaction pathway, is hydrolyzed nonenzymatically to gluconic acid. Evidence is presented to suggest that the increased gas-liquid interfacial area brought about by increased agitation causes an increased net rate of lactone formation. This in turn results in an increased rate of hydrolysis of the lactone to gluconic acid. A model is presented hypothesizing that negatively charged cells adsorb at the gas-liquid interface. These cells attract hydrogen ions, causing a lowering of the pH in the film around the bubbles. It is this lowered pH which is considered to bring about increased fermentation rates when the interfacial area is increased. Supporting evidence is presented.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: chemostat ; glucose limitation ; glycosylation ; CHO cells ; interferon-γ ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The physiology of a recombinant Chinese hamster ovary cell line in glucose-limited chemostat culture was studied over a range of dilution rates (D = 0.008 to 0.20 h-1). The specific growth rate (μ) deviated from D at low dilution rates due to an increased specific death rate. Extrapolation of these data suggested a minimum specific growth rate of 0.011 h-1 (μmax = 0.025 h-1) The metabolism at each steady state was characterized by determining the metabolic quotients for glucose, lactate, ammonia, amino acids, and interferon-γ (IFN-γ). The specific rate of glucose uptake increased linearly with μ, and the saturation constant for glucose (Ks) was calculated to be 59.6 μM. There was a linear increase in the rate of lactate production with a higher yield of lactate from glucose at high growth rates. The decline in the rate of production of lactate, alanine, and serine at low growth rate was consistent with the limitation of the glycolytic pathway by glucose. The specific rate of IFN-γ production increased with μ in a manner indicative of a growth-related product. Despite changes in the IFN-γ production rate and cell physiology, the pattern of IFN-γ glycosylation was similar at all except the lowest growth rates where there was increased production of nonglycosylated IFN-γ. © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 11 (1969), S. 785-804 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The physiology of Aspergillus nidulans strain 224 has been studied under conditions of batch- and glucose-limited chemostat-culture and the effect of different steady state growth rates and dissolved oxygen tensions (DOT) examined. Measurements of the specific activities of selected glucose enzymes, the extent of oxygen uptake inhibition by glycolytic inhibitors, and radiorespirometric analyses were made in order to follow the variations in glucose catabolism, which occurred under these conditions. Greatly increased activity of the hexosemonophosphate (HMP) pathway was found during: (i) exponential growth of batch cultures; (ii) at near maximum specific growth rates (μ = 0.072 hr-1) (DOT = 156 mm Hg); and (iii) at low DOT levels (〈30 mm Hg) (μ = 0.050 hr-1) in chemostat cultures. These changes in glucose eatabolism have been discussed in terms of the biosynthetic demands of the fungus under the influence of changing growth pressures. Preliminary studies also have been made of transition state behavior following stepwise alteration of the DOT. A new steady state was established after 4-5 culture doublings during which period an “overshoot” in HMP pathway activity occurred; these kinetics are indicative of a derepression of certain glucose enzymes. Low molecular weight phenols are synthesized during the exponential phase in batch cultures and these are further metabliized to a major secondary metabolite, melanin, at the onset of stationary phase conditions. The kinetics of tyrosinase production in steady state chemostats differs from those that might be predicted for an enzyme associated solely with secondary metabolism. A primary physiological role for this oxidase in Aspergillus nidulans has been postulated.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 1054-1065 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Four fluidized bed reactors were used to evaluate single-and separated-phase anaerobic treatments of a high strength wastewater. Two reactors were fed with a synthetic wastewater, containing glucose as the primary carbon source, with a COD of 1.2 × 104 mg/L while the remaining pair were fed with a wastewater with a COD of 6000 mg/L. AT each influent strength, one fluidized bed reactor was operated as a single-phase system while the other was operated as a methanogenic reactor which was preceded by an acidification reactor in a separatedphase system. The reactors were operated under steady-state and variable process conditions. The separated-phase system consistently gave a better quality effluent with lower effluent suspended solids and total COD, and the methane yield was also improved. Under variable process conditions, the separated-phase system was inherently more stable and recovered more rapidly following a shock loading. Propionate and acetate degradation studies indicated that the biomass in the methanogenic fluidized beds of the two-phase systems was more adapted to volatile acid degradation than the biomass in the single-phase fluidized beds.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 827-827 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 36 (1990), S. 763-770 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A temperature-sensitive cell division cycle mutant of Penicillium chrysogenum P2 has been immobilized on Celite and grown in a 250-320-L working volume air-lift fermenter. The ability to uncouple growth and penicillin synthesis by raising the temperature to 30 °C also overcame the problem of the free cell mass which appeared after 300 h operation with the parent organism. After 500 h operation, penicillin and ACV dimer were still being synthesized.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3592
    Keywords: Chinese hamster ovary ; interferon-γ ; chemostat culture ; glycosylation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Chinese hamster ovary (CHO) cell line expressing recombinant human interferon-γ (IFN-γ) was grown under glucose limitation in a chemostate at a constant dilution rate of 0.015 h-1 with glucose feed concentrations of 2.75 mM and 4.25 mM. The changes in cell concentration that accompanied changes in the glucose feed concentration indicated that the cells were glucose-limited. The cell yield on glucose remained constant, but there was a decline in residual glucose concentration and a reduced lactate yield from glucose in the latter stages of the culture. The consumption rates for many of the essential amino acids were increased later in the culture. The volumetric rate of interferon-γ production was maintained throughout the course of this culture, indicating that IFN-γ expression was stable under these conditions. However, the specific rate of IFN-γ production was significantly lower at the higher glucose feed concentration. Under glucose limitation, the proportion of fully glycosylated IFN-γ produced by these cells was less than that produced in the early stages of batch cultures. The proportion of fully glycosylated IFN-γ increased during transient periods of glucose excess, suggesting that the culture environment influences the glycosylation of IFN-γ.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 147-158 
    ISSN: 0006-3592
    Keywords: CHO cell ; cell aggregation ; recombinant human interferon-γ ; mammalian cell culture ; cell culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-γ (IFN-γ), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-γ. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-γ within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-γ are heterogeneous in their environment, with variable access to O2 and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...