ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 11 (1969), S. 785-804 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The physiology of Aspergillus nidulans strain 224 has been studied under conditions of batch- and glucose-limited chemostat-culture and the effect of different steady state growth rates and dissolved oxygen tensions (DOT) examined. Measurements of the specific activities of selected glucose enzymes, the extent of oxygen uptake inhibition by glycolytic inhibitors, and radiorespirometric analyses were made in order to follow the variations in glucose catabolism, which occurred under these conditions. Greatly increased activity of the hexosemonophosphate (HMP) pathway was found during: (i) exponential growth of batch cultures; (ii) at near maximum specific growth rates (μ = 0.072 hr-1) (DOT = 156 mm Hg); and (iii) at low DOT levels (〈30 mm Hg) (μ = 0.050 hr-1) in chemostat cultures. These changes in glucose eatabolism have been discussed in terms of the biosynthetic demands of the fungus under the influence of changing growth pressures. Preliminary studies also have been made of transition state behavior following stepwise alteration of the DOT. A new steady state was established after 4-5 culture doublings during which period an “overshoot” in HMP pathway activity occurred; these kinetics are indicative of a derepression of certain glucose enzymes. Low molecular weight phenols are synthesized during the exponential phase in batch cultures and these are further metabliized to a major secondary metabolite, melanin, at the onset of stationary phase conditions. The kinetics of tyrosinase production in steady state chemostats differs from those that might be predicted for an enzyme associated solely with secondary metabolism. A primary physiological role for this oxidase in Aspergillus nidulans has been postulated.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...