ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon/analysis  (1)
  • Cyanobacteria/genetics/growth & development/metabolism  (1)
  • 1
    Publication Date: 2009-02-03
    Description: Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Mooy, Benjamin A S -- Fredricks, Helen F -- Pedler, Byron E -- Dyhrman, Sonya T -- Karl, David M -- Koblizek, Michal -- Lomas, Michael W -- Mincer, Tracy J -- Moore, Lisa R -- Moutin, Thierry -- Rappe, Michael S -- Webb, Eric A -- England -- Nature. 2009 Mar 5;458(7234):69-72. doi: 10.1038/nature07659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA. bvanmooy@whoi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182781" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/analysis ; *Lipid Metabolism ; Lipids/*chemistry ; Membrane Lipids/chemistry ; Nitrogen/analysis/metabolism ; Oceans and Seas ; Phosphates/metabolism ; Phospholipids/biosynthesis ; Phosphorus/analysis/*deficiency ; Phytoplankton/*metabolism ; Seawater/*chemistry/microbiology ; Synechococcus/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-04-07
    Description: We have applied "whole-genome shotgun sequencing" to microbial populations collected en masse on tangential flow and impact filters from seawater samples collected from the Sargasso Sea near Bermuda. A total of 1.045 billion base pairs of nonredundant sequence was generated, annotated, and analyzed to elucidate the gene content, diversity, and relative abundance of the organisms within these environmental samples. These data are estimated to derive from at least 1800 genomic species based on sequence relatedness, including 148 previously unknown bacterial phylotypes. We have identified over 1.2 million previously unknown genes represented in these samples, including more than 782 new rhodopsin-like photoreceptors. Variation in species present and stoichiometry suggests substantial oceanic microbial diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J Craig -- Remington, Karin -- Heidelberg, John F -- Halpern, Aaron L -- Rusch, Doug -- Eisen, Jonathan A -- Wu, Dongying -- Paulsen, Ian -- Nelson, Karen E -- Nelson, William -- Fouts, Derrick E -- Levy, Samuel -- Knap, Anthony H -- Lomas, Michael W -- Nealson, Ken -- White, Owen -- Peterson, Jeremy -- Hoffman, Jeff -- Parsons, Rachel -- Baden-Tillson, Holly -- Pfannkoch, Cynthia -- Rogers, Yu-Hui -- Smith, Hamilton O -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):66-74. Epub 2004 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biological Energy Alternatives, 1901 Research Boulevard, Rockville, MD 20850, USA. jcventer@tcag.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001713" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*genetics ; Atlantic Ocean ; Bacteria/*genetics ; Bacteriophages/genetics ; Biodiversity ; Computational Biology ; Cyanobacteria/genetics/growth & development/metabolism ; *Ecosystem ; Eukaryotic Cells ; Genes, Archaeal ; Genes, Bacterial ; Genes, rRNA ; Genome, Archaeal ; *Genome, Bacterial ; *Genomics ; Molecular Sequence Data ; Photosynthesis ; Phylogeny ; Plasmids ; Rhodopsin/genetics ; Rhodopsins, Microbial ; Seawater/*microbiology ; *Sequence Analysis, DNA ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...