ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-05-04
    Description: Extracts of the resin of the guggul tree (Commiphora mukul) lower LDL (low-density lipoprotein) cholesterol levels in humans. The plant sterol guggulsterone [4,17(20)-pregnadiene-3,16-dione] is the active agent in this extract. We show that guggulsterone is a highly efficacious antagonist of the farnesoid X receptor (FXR), a nuclear hormone receptor that is activated by bile acids. Guggulsterone treatment decreases hepatic cholesterol in wild-type mice fed a high-cholesterol diet but is not effective in FXR-null mice. Thus, we propose that inhibition of FXR activation is the basis for the cholesterol-lowering activity of guggulsterone. Other natural products with specific biologic effects may modulate the activity of FXR or other relatively promiscuous nuclear hormone receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Urizar, Nancy L -- Liverman, Amy B -- Dodds, D'Nette T -- Silva, Frank Valentin -- Ordentlich, Peter -- Yan, Yingzhuo -- Gonzalez, Frank J -- Heyman, Richard A -- Mangelsdorf, David J -- Moore, David D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1703-6. Epub 2002 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caco-2 Cells ; Carrier Proteins/genetics/metabolism ; Cells, Cultured ; Chenodeoxycholic Acid/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/administration & dosage ; DNA/metabolism ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Hepatocytes/metabolism ; Histone Acetyltransferases ; Humans ; *Hydroxysteroid Dehydrogenases ; Hypolipidemic Agents/metabolism/*pharmacology ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; Pregnenediones/metabolism/*pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors/genetics/metabolism ; Receptors, Steroid/antagonists & inhibitors/metabolism ; Transcription Factors/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Transcriptional Activation/drug effects ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-12
    Description: Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 A resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 A structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Aiwu -- Carrell, Robin W -- Murphy, Michael P -- Wei, Zhenquan -- Yan, Yahui -- Stanley, Peter L D -- Stein, Penelope E -- Broughton Pipkin, Fiona -- Read, Randy J -- 082961/Wellcome Trust/United Kingdom -- BS/05/002/18361/British Heart Foundation/United Kingdom -- MC_U105663142/Medical Research Council/United Kingdom -- PG/08/041/24818/British Heart Foundation/United Kingdom -- PG/09/072/27945/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 4;468(7320):108-11. doi: 10.1038/nature09505. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. awz20@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927107" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiotensinogen/blood/*chemistry/*metabolism ; Angiotensins/chemistry/*metabolism/secretion ; Blood Pressure ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Female ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; Pre-Eclampsia/blood/metabolism ; Pregnancy ; Protein Conformation ; *Protein Processing, Post-Translational ; Renin/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-07-14
    Description: Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miled, Nabil -- Yan, Ying -- Hon, Wai-Ching -- Perisic, Olga -- Zvelebil, Marketa -- Inbar, Yuval -- Schneidman-Duhovny, Dina -- Wolfson, Haim J -- Backer, Jonathan M -- Williams, Roger L -- GM55692/GM/NIGMS NIH HHS/ -- MC_U105184308/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626883" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Catalytic Domain ; Cattle ; Cell Line ; Cell Transformation, Neoplastic ; Crystallography, X-Ray ; Dimerization ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/antagonists & ; inhibitors/chemistry/*genetics/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-08
    Description: DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify approximately 2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect approximately 580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thurman, Robert E -- Rynes, Eric -- Humbert, Richard -- Vierstra, Jeff -- Maurano, Matthew T -- Haugen, Eric -- Sheffield, Nathan C -- Stergachis, Andrew B -- Wang, Hao -- Vernot, Benjamin -- Garg, Kavita -- John, Sam -- Sandstrom, Richard -- Bates, Daniel -- Boatman, Lisa -- Canfield, Theresa K -- Diegel, Morgan -- Dunn, Douglas -- Ebersol, Abigail K -- Frum, Tristan -- Giste, Erika -- Johnson, Audra K -- Johnson, Ericka M -- Kutyavin, Tanya -- Lajoie, Bryan -- Lee, Bum-Kyu -- Lee, Kristen -- London, Darin -- Lotakis, Dimitra -- Neph, Shane -- Neri, Fidencio -- Nguyen, Eric D -- Qu, Hongzhu -- Reynolds, Alex P -- Roach, Vaughn -- Safi, Alexias -- Sanchez, Minerva E -- Sanyal, Amartya -- Shafer, Anthony -- Simon, Jeremy M -- Song, Lingyun -- Vong, Shinny -- Weaver, Molly -- Yan, Yongqi -- Zhang, Zhancheng -- Zhang, Zhuzhu -- Lenhard, Boris -- Tewari, Muneesh -- Dorschner, Michael O -- Hansen, R Scott -- Navas, Patrick A -- Stamatoyannopoulos, George -- Iyer, Vishwanath R -- Lieb, Jason D -- Sunyaev, Shamil R -- Akey, Joshua M -- Sabo, Peter J -- Kaul, Rajinder -- Furey, Terrence S -- Dekker, Job -- Crawford, Gregory E -- Stamatoyannopoulos, John A -- F30 DK095678/DK/NIDDK NIH HHS/ -- GM076036/GM/NIGMS NIH HHS/ -- HG004563/HG/NHGRI NIH HHS/ -- HG004592/HG/NHGRI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- MC_UP_1102/1/Medical Research Council/United Kingdom -- P30 CA016086/CA/NCI NIH HHS/ -- R01 GM076036/GM/NIGMS NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 MH084676/MH/NIMH NIH HHS/ -- R01MH084676/MH/NIMH NIH HHS/ -- U54 HG004563/HG/NHGRI NIH HHS/ -- U54 HG004592/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955617" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/*genetics/*metabolism ; DNA/*genetics ; DNA Footprinting ; DNA Methylation ; DNA-Binding Proteins/metabolism ; Deoxyribonuclease I/metabolism ; *Encyclopedias as Topic ; Evolution, Molecular ; Genome, Human/*genetics ; Genomics ; Humans ; *Molecular Sequence Annotation ; Mutation Rate ; Promoter Regions, Genetic/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/metabolism ; Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-06
    Description: Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme-the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors-most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Timothy R -- Fridlyand, Jane -- Yan, Yibing -- Penuel, Elicia -- Burton, Luciana -- Chan, Emily -- Peng, Jing -- Lin, Eva -- Wang, Yulei -- Sosman, Jeff -- Ribas, Antoni -- Li, Jiang -- Moffat, John -- Sutherlin, Daniel P -- Koeppen, Hartmut -- Merchant, Mark -- Neve, Richard -- Settleman, Jeff -- K24 CA097588/CA/NCI NIH HHS/ -- England -- Nature. 2012 Jul 26;487(7408):505-9. doi: 10.1038/nature11249.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Oncology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763448" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Breast Neoplasms/*drug therapy/genetics/metabolism/pathology ; Cell Line, Tumor ; Cell Survival/drug effects ; *Drug Resistance, Neoplasm/drug effects ; Female ; Hepatocyte Growth Factor/*metabolism/pharmacology ; Humans ; Indoles/*pharmacology ; Ligands ; Melanoma/*drug therapy/enzymology/genetics/pathology ; Mitogen-Activated Protein Kinases/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Kinase Inhibitors/*pharmacology ; Proto-Oncogene Proteins B-raf/*antagonists & inhibitors/genetics ; Quinazolines/pharmacology ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, ErbB-2/genetics/metabolism ; Signal Transduction/drug effects ; Sulfonamides/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-26
    Description: 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mavrakis, Konstantinos J -- McDonald, E Robert 3rd -- Schlabach, Michael R -- Billy, Eric -- Hoffman, Gregory R -- deWeck, Antoine -- Ruddy, David A -- Venkatesan, Kavitha -- Yu, Jianjun -- McAllister, Gregg -- Stump, Mark -- deBeaumont, Rosalie -- Ho, Samuel -- Yue, Yingzi -- Liu, Yue -- Yan-Neale, Yan -- Yang, Guizhi -- Lin, Fallon -- Yin, Hong -- Gao, Hui -- Kipp, D Randal -- Zhao, Songping -- McNamara, Joshua T -- Sprague, Elizabeth R -- Zheng, Bing -- Lin, Ying -- Cho, Young Shin -- Gu, Justin -- Crawford, Kenneth -- Ciccone, David -- Vitari, Alberto C -- Lai, Albert -- Capka, Vladimir -- Hurov, Kristen -- Porter, Jeffery A -- Tallarico, John -- Mickanin, Craig -- Lees, Emma -- Pagliarini, Raymond -- Keen, Nicholas -- Schmelzle, Tobias -- Hofmann, Francesco -- Stegmeier, Frank -- Sellers, William R -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1208-13. doi: 10.1126/science.aad5944. Epub 2016 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA. ; Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland. ; Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA. ; China Novartis Institutes for Biomedical Research, Shanghai 201203, China. ; Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA. william.sellers@novartis.com fstegmeier@ksqtx.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912361" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Survival ; Cyclin-Dependent Kinase Inhibitor p16/genetics/*metabolism ; Deoxyadenosines/metabolism ; Gene Deletion ; Humans ; Methionine/*metabolism ; Neoplasms/drug therapy/genetics/*metabolism ; Protein-Arginine N-Methyltransferases/genetics/*metabolism ; Purine-Nucleoside Phosphorylase/genetics/*metabolism ; RNA, Small Interfering/genetics ; Thionucleosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-30
    Description: p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo-electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)-bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPgammaS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Soojay -- Bartesaghi, Alberto -- Merk, Alan -- Rao, Prashant -- Bulfer, Stacie L -- Yan, Yongzhao -- Green, Neal -- Mroczkowski, Barbara -- Neitz, R Jeffrey -- Wipf, Peter -- Falconieri, Veronica -- Deshaies, Raymond J -- Milne, Jacqueline L S -- Huryn, Donna -- Arkin, Michelle -- Subramaniam, Sriram -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):871-5. doi: 10.1126/science.aad7974. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ; Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA. ; University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA. ; Leidos Biomedical Research Inc., Frederick, MD 21702, USA. ; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA. ; Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91107, USA. ; Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ss1@nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26822609" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Adenosine Triphosphatases/*antagonists & inhibitors/*chemistry ; Adenosine Triphosphate/analogs & derivatives/chemistry ; Allosteric Regulation ; Binding Sites ; Cryoelectron Microscopy ; Enzyme Inhibitors ; Humans ; Models, Molecular ; Nuclear Proteins/*antagonists & inhibitors/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A third order Runge-Kutta type algorithm is described with the property that it preserves certain geometric structures. In particular, if the algorithm is initialized on a Lie group, then the resulting iterates remain on the Lie group.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-CR-190330 , NAS 1.26:190330
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: We describe new types of numerical integration algorithms developed by the authors. The main aim of the algorithms is to numerically integrate differential equations which evolve on geometric objects, such as the rotation group. The algorithms provide iterates which lie on the prescribed geometric object, either exactly, or to some prescribed accuracy, independent of the order of the algorithm. This paper describes applications of these algorithms to the evolution of the attitude of a rigid body.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-CR-194788 , NAS 1.26:194788
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...