ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-04-17
    Description: The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coale, Kenneth H -- Johnson, Kenneth S -- Chavez, Francisco P -- Buesseler, Ken O -- Barber, Richard T -- Brzezinski, Mark A -- Cochlan, William P -- Millero, Frank J -- Falkowski, Paul G -- Bauer, James E -- Wanninkhof, Rik H -- Kudela, Raphael M -- Altabet, Mark A -- Hales, Burke E -- Takahashi, Taro -- Landry, Michael R -- Bidigare, Robert R -- Wang, Xiujun -- Chase, Zanna -- Strutton, Pete G -- Friederich, Gernot E -- Gorbunov, Maxim Y -- Lance, Veronica P -- Hilting, Anna K -- Hiscock, Michael R -- Demarest, Mark -- Hiscock, William T -- Sullivan, Kevin F -- Tanner, Sara J -- Gordon, R Mike -- Hunter, Craig N -- Elrod, Virginia A -- Fitzwater, Steve E -- Jones, Janice L -- Tozzi, Sasha -- Koblizek, Michal -- Roberts, Alice E -- Herndon, Julian -- Brewster, Jodi -- Ladizinsky, Nicolas -- Smith, Geoffrey -- Cooper, David -- Timothy, David -- Brown, Susan L -- Selph, Karen E -- Sheridan, Cecelia C -- Twining, Benjamin S -- Johnson, Zackary I -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):408-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039-9647, USA. coale@mlml.calstate.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087542" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis/*metabolism ; Carbon Dioxide/analysis/metabolism ; Chlorophyll/analysis ; Diatoms/growth & development/metabolism ; Ecosystem ; *Iron/analysis/metabolism ; Nitrates/analysis/metabolism ; Nitrogen/analysis/metabolism ; Oceans and Seas ; Photosynthesis ; Phytoplankton/*growth & development/metabolism ; Seawater/chemistry ; *Silicic Acid/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-02-03
    Description: Since the mid-1980s, our understanding of nutrient limitation of oceanic primary production has radically changed. Mesoscale iron addition experiments (FeAXs) have unequivocally shown that iron supply limits production in one-third of the world ocean, where surface macronutrient concentrations are perennially high. The findings of these 12 FeAXs also reveal that iron supply exerts controls on the dynamics of plankton blooms, which in turn affect the biogeochemical cycles of carbon, nitrogen, silicon, and sulfur and ultimately influence the Earth climate system. However, extrapolation of the key results of FeAXs to regional and seasonal scales in some cases is limited because of differing modes of iron supply in FeAXs and in the modern and paleo-oceans. New research directions include quantification of the coupling of oceanic iron and carbon biogeochemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyd, P W -- Jickells, T -- Law, C S -- Blain, S -- Boyle, E A -- Buesseler, K O -- Coale, K H -- Cullen, J J -- de Baar, H J W -- Follows, M -- Harvey, M -- Lancelot, C -- Levasseur, M -- Owens, N P J -- Pollard, R -- Rivkin, R B -- Sarmiento, J -- Schoemann, V -- Smetacek, V -- Takeda, S -- Tsuda, A -- Turner, S -- Watson, A J -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):612-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute for Water and Atmospheric Research (NIWA) Centre for Chemical and Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand. pboyd@alkali.otago.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; Carbon/analysis/metabolism ; Carbon Dioxide ; Chlorophyll/analysis ; Climate ; Diatoms/growth & development ; *Ecosystem ; *Iron/analysis ; Oceans and Seas ; Phytoplankton/*growth & development/metabolism ; *Seawater ; Zooplankton/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...