ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-06
    Description: Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-22
    Description: The effort and expense associated with sample and data collections for long oceanographic time series are, in part, driving the development of autonomous platforms, sensors and sample collectors. Here we validate basic oceanographic samples collected by an autonomous underwater vehicle with water sampler (AUV with “Gulper”) by comparison with samples collected by a standard collection device, the conductivity-temperature-depth rosette with Niskin bottles. After elimination of a toxic material, “on-deck” and field comparisons show that Gulpers and Niskin bottles collect comparable nitrate, chlorophyll, phytoplankton species and 14 C-based primary production (PP) samples and data. Gulper materials and lubricants, Gulper firing, field presence of the possibly toxic submarine, and the pressure and temperature cycling associated with the submarine's depth undulations all appear unimportant. However, 24 h sample hold periods for live samples within the Gulpers, as is necessary during many AUV deployments, appears to depress nitrate, chlorophyll and PP values somewhat (4–16%). While challenges remain, demonstration that the AUV and sampler can collect fundamental oceanographic samples is a critical step toward the broader use of such autonomous platforms.
    Electronic ISSN: 1541-5856
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2012-07-26
    Description: A physical and bio-optical field survey of the Monterey Bay area was conducted during May–June 2008. The combined bio-optical and physical data may be summarized as a transition between two end-member states during the late spring to summer upwelling season: (1) the mesotrophic, nanoflagellate-dominated, low-salinity surface waters (chlorophyll-a ∼ 0.5–2 mg m−3; S 〈 33.4) of the California Current and (2) the eutrophic, diatomaceous, higher salinity surface waters (chlorophyll-a 〉 2 mg m−3; S 〉 33.8) of Monterey Bay and adjacent continental shelf areas. High-resolution and collocated spectrophotometric, fluorometric and CTD data obtained from a towed platform indicated low-salinity subarctic-origin surface waters intruded into Monterey Bay on 4 June. The dark in vivo fluorometry (IVF) phytoplankton response normalized to particle absorption at 676 nm (the apparent fluorescence efficiency, AFE) was nearly fourfold larger in this water mass type compared to higher salinity surface waters more typical of Monterey Bay. The collocated fluorescence and optical data were then used to estimate in situ irradiance values and determine apparent light saturation intensities (I′k) based on the remarkably consistent AFE water column inflection points. I′k values retrieved from the low-salinity surface waters were approximately half those obtained over the continental shelf. An analysis of concomitant HPLC data, in addition to historical data for the region, suggest these observed fluorescence trends may be indicative of taxon-specific variation in photophysiology. Specifically, the subarctic water mass-associated pelagic nanoflagellate group likely possesses a fundamentally different photosynthetic architecture than large diatoms prototypical of coastal upwelling regimes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-01-11
    Description: In the Pacific Ocean, air and ocean temperatures, atmospheric carbon dioxide, landings of anchovies and sardines, and the productivity of coastal and open ocean ecosystems have varied over periods of about 50 years. In the mid-1970s, the Pacific changed from a cool "anchovy regime" to a warm "sardine regime." A shift back to an anchovy regime occurred in the middle to late 1990s. These large-scale, naturally occurring variations must be taken into account when considering human-induced climate change and the management of ocean living resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chavez, Francisco P -- Ryan, John -- Lluch-Cota, Salvador E -- Niquen C, Miguel -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):217-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA. chfr@mbari.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; Birds ; Carbon Dioxide ; *Climate ; *Ecosystem ; *Fishes ; Pacific Ocean ; *Seawater ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-12-11
    Description: During the 1997-98 El Nino, the equatorial Pacific Ocean retained 0. 7 x 10(15) grams of carbon that normally would have been lost to the atmosphere as carbon dioxide. The surface ocean became impoverished in plant nutrients, and chlorophyll concentrations were the lowest on record. A dramatic recovery occurred in mid-1998, the system became highly productive, analogous to coastal environments, and carbon dioxide flux out of the ocean was again high. The spatial extent of the phytoplankton bloom that followed recovery from El Nino was the largest ever observed for the equatorial Pacific. These chemical and ecological perturbations were linked to changes in the upwelling of nutrient-enriched waters. The description and explanation of these dynamic changes would not have been possible without an observing system that combines biological, chemical, and physical sensors on moorings with remote sensing of chlorophyll.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chavez -- Strutton -- Friederich -- Feely -- Feldman -- Foley -- McPhaden -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2126-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA. E-mail: chfr@mbari.org. National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591638" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-04-17
    Description: The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coale, Kenneth H -- Johnson, Kenneth S -- Chavez, Francisco P -- Buesseler, Ken O -- Barber, Richard T -- Brzezinski, Mark A -- Cochlan, William P -- Millero, Frank J -- Falkowski, Paul G -- Bauer, James E -- Wanninkhof, Rik H -- Kudela, Raphael M -- Altabet, Mark A -- Hales, Burke E -- Takahashi, Taro -- Landry, Michael R -- Bidigare, Robert R -- Wang, Xiujun -- Chase, Zanna -- Strutton, Pete G -- Friederich, Gernot E -- Gorbunov, Maxim Y -- Lance, Veronica P -- Hilting, Anna K -- Hiscock, Michael R -- Demarest, Mark -- Hiscock, William T -- Sullivan, Kevin F -- Tanner, Sara J -- Gordon, R Mike -- Hunter, Craig N -- Elrod, Virginia A -- Fitzwater, Steve E -- Jones, Janice L -- Tozzi, Sasha -- Koblizek, Michal -- Roberts, Alice E -- Herndon, Julian -- Brewster, Jodi -- Ladizinsky, Nicolas -- Smith, Geoffrey -- Cooper, David -- Timothy, David -- Brown, Susan L -- Selph, Karen E -- Sheridan, Cecelia C -- Twining, Benjamin S -- Johnson, Zackary I -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):408-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039-9647, USA. coale@mlml.calstate.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087542" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis/*metabolism ; Carbon Dioxide/analysis/metabolism ; Chlorophyll/analysis ; Diatoms/growth & development/metabolism ; Ecosystem ; *Iron/analysis/metabolism ; Nitrates/analysis/metabolism ; Nitrogen/analysis/metabolism ; Oceans and Seas ; Photosynthesis ; Phytoplankton/*growth & development/metabolism ; Seawater/chemistry ; *Silicic Acid/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-11-22
    Description: An empirical correlation between marine barite (BaSO4) accumulation rate in core-top sediment samples from two equatorial Pacific transects (at 140°W and 110°W) and the estimated primary productivity of the overlying water column were used to evaluate glacial to interglacial changes in productivity. Fluctuations in barite accumulation rates down-core indicate that during glacial periods of the past 450,000 years, the productivity in the central and eastern equatorial Pacific was about two times that during intervening interglacial periods. This result is consistent with other evidence that productivity was high in the eastern and central equatorial Pacific during the last glacial.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paytan -- Kastner -- Chavez -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1355-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉A. Paytan and M. Kastner, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0212, USA. E-mail: apaytan@ucsd.edu F. P. Chavez, MBARI, Post Office Box 628, 7700 Sandholdt Road, Moss Landing, CA 95039-0628, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910271" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-26
    Description: Predicting water column integrated phytoplankton biomass from near-surface measurements has been an important effort in marine ecological research, particularly since the advent of satellite remote sensing of ocean color. Quantitative relationships between chlorophyll-a concentrations (Chl-a) at the surface and its depth-integrated magnitude have thus far only been developed for open-ocean waters. Here we develop and test for the first time an extension of open-ocean relationships into ocean-margin waters, specifically the highly productive and variable eastern boundary upwelling ecosystem off the central California coast. This region was chosen because of the unique availability of a 30-year record of ship-based Chl-a profiles measured using consistent methods. The extended relationship allows accurate prediction of integrated biomass from surface measurements. Further, we develop a new set of relationships for predicting the depth-integrated Chl-a from Chl-a measured over a range of discrete depths (i.e., as measured by fluorometers on moorings). The newly developed relationships are tested against 15,000 fluorometric Chl-a profiles obtained from an autonomous underwater vehicle. Surprisingly, the relationship between surface Chl-a and depth-integrated Chl-a holds for profiles with high concentrations of Chl-a in persistent subsurface thin phytoplankton layers (layers
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-17
    Description: A simple combination of wind-driven nutrient upwelling, surface currents and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phyto- and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g. , diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...