ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997
    Description: Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, P H -- Bell, J F 3rd -- Bridges, N T -- Britt, D T -- Gaddis, L -- Greeley, R -- Keller, H U -- Herkenhoff, K E -- Jaumann, R -- Johnson, J R -- Kirk, R L -- Lemmon, M -- Maki, J N -- Malin, M C -- Murchie, S L -- Oberst, J -- Parker, T J -- Reid, R J -- Sablotny, R -- Soderblom, L A -- Stoker, C -- Sullivan, R -- Thomas, N -- Tomasko, M G -- Wegryn, E -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1758-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. psmith@lpl.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388170" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ice ; *Mars ; Minerals ; *Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-08-07
    Description: The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, J A -- Arvidson, R -- Bell, J F 3rd -- Cabrol, N A -- Carr, M H -- Christensen, P -- Crumpler, L -- Des Marais, D J -- Ehlmann, B L -- Farmer, J -- Golombek, M -- Grant, F D -- Greeley, R -- Herkenhoff, K -- Li, R -- McSween, H Y -- Ming, D W -- Moersch, J -- Rice, J W Jr -- Ruff, S -- Richter, L -- Squyres, S -- Sullivan, R -- Weitz, C -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):807-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA. grantj@nasm.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297659" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Volcanic Eruptions ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-04
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Marais, D J Des -- d'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A H -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1698-703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576602" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-08-07
    Description: The Microscopic Imager on the Spirit rover analyzed the textures of the soil and rocks at Gusev crater on Mars at a resolution of 100 micrometers. Weakly bound agglomerates of dust are present in the soil near the Columbia Memorial Station. Some of the brushed or abraded rock surfaces show igneous textures and evidence for alteration rinds, coatings, and veins consistent with secondary mineralization. The rock textures are consistent with a volcanic origin and subsequent alteration and/or weathering by impact events, wind, and possibly water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Cabrol, N A -- Gaddis, L -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Kinch, K M -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Rice, J W Jr -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Wang, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):824-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297663" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; *Mars ; Volcanic Eruptions ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-04
    Description: The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Ehlmann, B L -- Farrand, W -- Gaddis, L -- Greeley, R -- Grotzinger, J -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Jolliff, B -- Kinch, K M -- Knoll, A H -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Ming, D W -- Rice, J W Jr -- Richter, L -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Thompson, S -- Wdowiak, T -- Weitz, C -- Whelley, P -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576607" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-04
    Description: The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soderblom, L A -- Anderson, R C -- Arvidson, R E -- Bell, J F 3rd -- Cabrol, N A -- Calvin, W -- Christensen, P R -- Clark, B C -- Economou, T -- Ehlmann, B L -- Farrand, W H -- Fike, D -- Gellert, R -- Glotch, T D -- Golombek, M P -- Greeley, R -- Grotzinger, J P -- Herkenhoff, K E -- Jerolmack, D J -- Johnson, J R -- Jolliff, B -- Klingelhofer, G -- Knoll, A H -- Learner, Z A -- Li, R -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Morris, R V -- Rice, J W Jr -- Richter, L -- Rieder, R -- Rodionov, D -- Schroder, C -- Seelos, F P 4th -- Soderblom, J M -- Squyres, S W -- Sullivan, R -- Watters, W A -- Weitz, C M -- Wyatt, M B -- Yen, A -- Zipfel, J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, Flagstaff, AZ 86001, USA. lsoderblom@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576606" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-08-07
    Description: The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Des Marais, D J -- D'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):794-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297657" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; Geologic Sediments ; Geological Phenomena ; Geology ; Magnetics ; *Mars ; Minerals ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...