ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Mars  (8)
  • *Extraterrestrial Environment  (6)
  • INSTRUMENTATION AND PHOTOGRAPHY  (3)
  • 1
    Publication Date: 1998-12-16
    Description: Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, M T -- Smith, D E -- Solomon, S C -- Abshire, J B -- Afzal, R S -- Aharonson, O -- Fishbaugh, K -- Ford, P G -- Frey, H V -- Garvin, J B -- Head, J W -- Ivanov, A B -- Johnson, C L -- Muhleman, D O -- Neumann, G A -- Pettengill, G H -- Phillips, R J -- Sun, X -- Zwally, H J -- Banerdt, W B -- Duxbury, T C -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2053-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zuber@tharsis.gsfc.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851922" target="_blank"〉PubMed〈/a〉
    Keywords: *Carbon Dioxide ; Extraterrestrial Environment ; *Ice ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-12-11
    Description: High-resolution altimetric data define the detailed topography of the northern lowlands of Mars, and a range of data is consistent with the hypothesis that a lowland-encircling geologic contact represents the ancient shoreline of a large standing body of water present in middle Mars history. The contact altitude is close to an equipotential line, the topography is smoother at all scales below the contact than above it, the volume enclosed by this contact is within the range of estimates of available water on Mars, and a series of extensive terraces parallel the contact in many places.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Head, J W 3rd -- Hiesinger, H -- Ivanov, M A -- Kreslavsky, M A -- Pratt, S -- Thomson, B J -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Brown University, Providence, RI 02912, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591640" target="_blank"〉PubMed〈/a〉
    Keywords: *Evolution, Planetary ; *Extraterrestrial Environment ; *Mars ; Oceans and Seas ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-05-29
    Description: Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D E -- Zuber, M T -- Solomon, S C -- Phillips, R J -- Head, J W -- Garvin, J B -- Banerdt, W B -- Muhleman, D O -- Pettengill, G H -- Neumann, G A -- Lemoine, F G -- Abshire, J B -- Aharonson, O -- Brown, C D -- Hauck, S A -- Ivanov, A B -- McGovern, P J -- Zwally, H J -- Duxbury, T C -- New York, N.Y. -- Science. 1999 May 28;284(5419):1495-503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Directorate, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA. dsmith@tharsis.gsfc.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348732" target="_blank"〉PubMed〈/a〉
    Keywords: *Evolution, Planetary ; Extraterrestrial Environment ; Ice ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-05-20
    Description: During late 1999/early 2000, the solid state imaging experiment on the Galileo spacecraft returned more than 100 high-resolution (5 to 500 meters per pixel) images of volcanically active Io. We observed an active lava lake, an active curtain of lava, active lava flows, calderas, mountains, plateaus, and plains. Several of the sulfur dioxide-rich plumes are erupting from distal flows, rather than from the source of silicate lava (caldera or fissure, often with red pyroclastic deposits). Most of the active flows in equatorial regions are being emplaced slowly beneath insulated crust, but rapidly emplaced channelized flows are also found at all latitudes. There is no evidence for high-viscosity lava, but some bright flows may consist of sulfur rather than mafic silicates. The mountains, plateaus, and calderas are strongly influenced by tectonics and gravitational collapse. Sapping channels and scarps suggest that many portions of the upper approximately 1 kilometer are rich in volatiles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McEwen, A S -- Belton, M J -- Breneman, H H -- Fagents, S A -- Geissler, P -- Greeley, R -- Head, J W -- Hoppa, G -- Jaeger, W L -- Johnson, T V -- Keszthelyi, L -- Klaasen, K P -- Lopes-Gautier, R -- Magee, K P -- Milazzo, M P -- Moore, J M -- Pappalardo, R T -- Phillips, C B -- Radebaugh, J -- Schubert, G -- Schuster, P -- Simonelli, D P -- Sullivan, R -- Thomas, P C -- Turtle, E P -- Williams, D A -- New York, N.Y. -- Science. 2000 May 19;288(5469):1193-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10817986" target="_blank"〉PubMed〈/a〉
    Keywords: *Extraterrestrial Environment ; Geological Phenomena ; Geology ; Image Enhancement ; *Jupiter ; *Space Flight ; Spectrophotometry, Infrared ; *Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-03-28
    Description: The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D E -- Zuber, M T -- Frey, H V -- Garvin, J B -- Head, J W -- Muhleman, D O -- Pettengill, G H -- Phillips, R J -- Solomon, S C -- Zwally, H J -- Banerdt, W B -- Duxbury, T C -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1686-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Directorate, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497281" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ice ; *Mars ; Spacecraft
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-03-10
    Description: Topography and gravity measured by the Mars Global Surveyor have enabled determination of the global crust and upper mantle structure of Mars. The planet displays two distinct crustal zones that do not correlate globally with the geologic dichotomy: a region of crust that thins progressively from south to north and encompasses much of the southern highlands and Tharsis province and a region of approximately uniform crustal thickness that includes the northern lowlands and Arabia Terra. The strength of the lithosphere beneath the ancient southern highlands suggests that the northern hemisphere was a locus of high heat flow early in martian history. The thickness of the elastic lithosphere increases with time of loading in the northern plains and Tharsis. The northern lowlands contain structures interpreted as large buried channels that are consistent with northward transport of water and sediment to the lowlands before the end of northern hemisphere resurfacing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, M T -- Solomon, S C -- Phillips, R J -- Smith, D E -- Tyler, G L -- Aharonson, O -- Balmino, G -- Banerdt, W B -- Head, J W -- Johnson, C L -- Lemoine, F G -- McGovern, P J -- Neumann, G A -- Rowlands, D D -- Zhong, S -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1788-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zuber@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710301" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Evolution, Planetary ; *Extraterrestrial Environment ; Geologic Sediments ; Gravitation ; *Mars ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-07-04
    Description: Infrared wavelength observations of Io by the Galileo spacecraft show that at least 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patera, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with these high-temperature hot spots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McEwen, A S -- Keszthelyi, L -- Spencer, J R -- Schubert, G -- Matson, D L -- Lopes-Gautier, R -- Klaasen, K P -- Johnson, T V -- Head, J W -- Geissler, P -- Fagents, S -- Davies, A G -- Carr, M H -- Breneman, H H -- Belton, M J -- New York, N.Y. -- Science. 1998 Jul 3;281(5373):87-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85711, USA. mcewen@lpl.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9651251" target="_blank"〉PubMed〈/a〉
    Keywords: *Extraterrestrial Environment ; Hot Temperature ; *Jupiter ; Minerals ; *Silicates ; Spectrophotometry, Infrared ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-02-26
    Description: Mars was most active during its first billion years. The core, mantle, and crust formed within approximately 50 million years of solar system formation. A magnetic dynamo in a convecting fluid core magnetized the crust, and the global field shielded a more massive early atmosphere against solar wind stripping. The Tharsis province became a focus for volcanism, deformation, and outgassing of water and carbon dioxide in quantities possibly sufficient to induce episodes of climate warming. Surficial and near-surface water contributed to regionally extensive erosion, sediment transport, and chemical alteration. Deep hydrothermal circulation accelerated crustal cooling, preserved variations in crustal thickness, and modified patterns of crustal magnetization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, Sean C -- Aharonson, Oded -- Aurnou, Jonathan M -- Banerdt, W Bruce -- Carr, Michael H -- Dombard, Andrew J -- Frey, Herbert V -- Golombek, Matthew P -- Hauck, Steven A 2nd -- Head, James W 3rd -- Jakosky, Bruce M -- Johnson, Catherine L -- McGovern, Patrick J -- Neumann, Gregory A -- Phillips, Roger J -- Smith, David E -- Zuber, Maria T -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1214-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA. scs@dtm.ciw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731435" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Climate ; Extraterrestrial Environment ; Magnetics ; *Mars ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-01-21
    Description: Surface conditions on Mars are currently cold and dry, with water ice unstable on the surface except near the poles. However, geologically recent glacierlike landforms have been identified in the tropics and the midlatitudes of Mars. The ice has been proposed to originate from either a subsurface reservoir or the atmosphere. We present high-resolution climate simulations performed with a model designed to simulate the present-day Mars water cycle but assuming a 45 degrees obliquity as experienced by Mars a few million years ago. The model predicts ice accumulation in regions where glacier landforms are observed, on the western flanks of the great volcanoes and in the eastern Hellas region. This agreement points to an atmospheric origin for the ice and reveals how precipitation could have formed glaciers on Mars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forget, F -- Haberle, R M -- Montmessin, F -- Levrard, B -- Head, J W -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):368-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Meteorologie Dynamique, Institut Pierre Simon Laplace, Universite Paris 6 Boite Postale 99, 75252 Paris cedex 05, France. forget@lmd.jussieu.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424337" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Climate ; Computer Simulation ; Extraterrestrial Environment ; *Ice ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-22
    Description: Lobate features abutting massifs and escarpments in the middle latitudes of Mars have been recognized in images for decades, but their true nature has been controversial, with hypotheses of origin such as ice-lubricated debris flows or glaciers covered by a layer of surface debris. These models imply an ice content ranging from minor and interstitial to massive and relatively pure. Soundings of these deposits in the eastern Hellas region by the Shallow Radar on the Mars Reconnaissance Orbiter reveal radar properties entirely consistent with massive water ice, supporting the debris-covered glacier hypothesis. The results imply that these glaciers formed in a previous climate conducive to glaciation at middle latitudes. Such features may collectively represent the most extensive nonpolar ice yet recognized on Mars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holt, John W -- Safaeinili, Ali -- Plaut, Jeffrey J -- Head, James W -- Phillips, Roger J -- Seu, Roberto -- Kempf, Scott D -- Choudhary, Prateek -- Young, Duncan A -- Putzig, Nathaniel E -- Biccari, Daniela -- Gim, Yonggyu -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1235-8. doi: 10.1126/science.1164246.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Geophysics, Jackson School of Geosciences, University of Texas, Austin, TX 78758, USA. jack@ig.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023078" target="_blank"〉PubMed〈/a〉
    Keywords: *Extraterrestrial Environment ; Ice ; *Mars ; Radar
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...