ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (17)
  • nitrogen
  • Springer  (17)
  • Oxford University Press
  • Chemistry and Pharmacology  (17)
  • Process Engineering, Biotechnology, Nutrition Technology  (1)
Collection
  • Articles  (17)
Publisher
  • Springer  (17)
  • Oxford University Press
  • Elsevier  (4)
Years
Topic
  • 1
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m−2 yr−1 were made toSphagnum magellanicurn cores at two-week intervalsin situ at four sites across Europe, i.e. Lakkasuo (Finland). Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N∶P ratio 68) and greatest in Moidach More (N∶P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4 + in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3 − were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition bySphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: nitrogen ; particulate organic matter ; nutrient cycling ; grassland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A set of long term15N studies was initiated during the summers of 1981 and 1982 on the backslope and footslope, respectively, of a catena in the shortgrass steppe of northeastern Colorado. Microplots labeled with15N urea were sampled for15N and total N content in 1981 and 1982 and again in 1992. In November, 1982, 100% of the added N was recovered in the soil-plant system of the finer-textured footslope, compared to 39% in the coarser-textured backslope microplots. Ten years later,15N recovery of the applied N decreased at both topographic positions to 85% in the footslope and 29% in the backslope. Average losses since the time of application were 3.5 g N m−2yr−1 in the backslope and 0.8 g N m−2yr−1 in the footslope. In 1992, soil organic matter was physically fractionated into particulate (POM) and mineral associated (MAON) fractions and 21-day mineralization incubations were conducted to assess the relative amounts of15N that were in the slow, passive and active soil organic matter pools, respectively, of the two soils. Our findings confirm the assumptions that POM represents a large portion of the slow organic compartment and that the MAON represents a large fraction of the passive compartment defined in the Century model. The N located in the MAON had the lowest availability for plant uptake. Isotopic data were consistent with textural effects and with the Century model compartmentalization of soil organic N based on the residence time of the organic N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8757
    Keywords: kinetics ; isotope-exchange ; nitrogen ; adsorption ; methane ; zeolite ; equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The Isotope Exchange Technique (IET) was used to simultaneously measure pure and binary gas adsorption equilibria and kinetics (self-diffusivities) of CH4 and N2 on pelletized 4A zeolite. The experiment was carried out isothermally without disturbing the adsorbed phase. CH4 was selectively adsorbed over N2 by the zeolite because of its higher polarizability. The multi-site Langmuir model described the pure gas and binary adsorption equilibria fairly well at three different temperatures. The selectivity of adsorption of CH4 over N2 increased with increasing pressure at constant gas phase composition and temperature. This curious behavior was caused by the differences in the sizes of the adsorbates. The diffusion of CH4 and N2 into the zeolite was an activated process and the Fickian diffusion model described the uptake of both pure gases and their mixtures. The self-diffusivity of N2 was an order of magnitude larger than that for CH4. The pure gas self-diffusivities for both components were constants over a large range of surface coverages (0 〈 θ 〈 0.5). The self-diffusivities of CH4 and N2 from their binary mixtures were not affected by the presence of each other, compared to their pure gas self-diffusivities at identical surface coverages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: N2O ; CH4 ; red spruce ; balsam fir ; spruce-fir ; forests ; nitrogen ; deposition ; nitrification ; mineralization ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured the exchange of N2O and CH4 between the atmosphere and soils in 5 spruce-fir stands located along a transect from New York to Maine. Nitrous oxide emissions averaged over the 1990 growing season (May–September) ranged from 2.1 ug N2O-N/m2-hr in New York to 0.4 ug N2O-N/m2-hr in Maine. The westernmost sites, Whiteface Mtn., New York and Mt. Mansfield, Vermont, had the highest nitrogen-deposition, net nitrification and N2O emissions. Soils at all sites were net sinks for atmospheric CH4 Methane uptake averaged over the 1990 growing season ranged from 0.02 mg CH4-C/M2-hr in Maine to 0.05 mg CH4-C/m2-hr in Vermont. Regional differences in CH4 uptake could not be explained by differences in nitrogen-deposition, soil nitrogen dynamics, soil moisture or soil temperature. We estimate that soils in spruce-fir forests at our study sites released ca. 0.02 to 0.08 kg N2O-N/ha and consumed ca. 0.74 to 1.85 kg CH4 C/ha in the 1990 growing season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 32 (1996), S. 93-113 
    ISSN: 1573-515X
    Keywords: alpine ; biogeochemistry ; nitrogen ; nitrogen saturation ; snowmelt ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Experiments were conducted during 1993 at Niwot Ridge in the Colorado Front Range to determine if the insulating effect of winter snow cover allows soil microbial activity to significantly affect nitrogen inputs and outputs in alpine systems. Soil surface temperatures under seasonal snowpacks warmed from −14 °C in January to 0 °C by May 4th. Snowmelt began in mid-May and the sites were snow free by mid June. Heterotrophic microbial activity in snow-covered soils, measured as C02 production, was first identified on March 4, 1993. Net C02 flux increased from 55 mg CO2-C m−2 day−1 in early March to greater than 824 mg CO2-C m-2 day−1 by the middle of May. Carbon dioxide production decreased in late May as soils became saturated during snowmelt. Soil inorganic N concentrations increased before snowmelt, peaking between 101 and 276 mg kg−1 soil in May, and then decreasing as soils became saturated with melt water. Net N mineralization for the period of March 3 to May 4 ranged from 2.23 to 6.63 g N m−2, and were approximately two orders of magnitude greater than snowmelt inputs of 50.4 mg N m−2 for NH4 + and 97.2 mg N m−2 for NO3 −. Both NO3 − and NH4 + concentrations remained at or below detection limits in surface water during snowmelt, indicating the only export of inorganic N from the system was through gaseous losses. Nitrous oxide production under snow was first observed in early April. Production increased as soils warned, peaking at 75 μg N2O-N m−2 day−1 in soils saturated with melt water one week before the sites were snow free. These data suggest that microbial activity in snow-covered soils may play a key role in alpine N cycling before plants become active.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: continental shelf ; estuaries ; mass balance ; nitrogen ; North Atlantic ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Five large rivers that discharge on the western North Atlantic continental shelf carry about 45% of the nitrogen (N) and 70% of the phosphorus (P) that others estimate to be the total flux of these elements from the entire North Atlantic watershed, including North, Central and South America, Europe, and Northwest Africa. We estimate that 61 · 109 moles y−1 of N and 20 · 109 moles y−1 of P from the large rivers are buried with sediments in their deltas, and that an equal amount of N and P from the large rivers is lost to the shelf through burial of river sediments that are deposited directly on the continental slope. The effective transport of active N and P from land to the shelf through the very large rivers is thus reduced to 292 · 109 moles y−1 of N and 13 · 109 moles y−1 of P. The remaining riverine fluxes from land must pass through estuaries. An analysis of annual total N and total P budgets for various estuaries around the North Atlantic revealed that the net fractional transport of these nutrients through estuaries to the continental shelf is inversely correlated with the log mean residence time of water in the system. This is consistent with numerous observations of nutrient retention and loss in temperate lakes. Denitrification is the major process responsible for removing N in most estuaries, and the fraction of total N input that is denitrified appears to be directly proportional to the log mean water residence time. In general, we estimate that estuarine processes retain and remove 30–65% of the total N and 10–55% of the total P that would otherwise pass into the coastal ocean. The resulting transport through estuaries to the shelf amounts to 172–335 · 109 moles y−1 of N and 11–19 · 109 moles y−1 of P. These values are similar to the effective contribution from the large rivers that discharge directly on the shelf. For the North Atlantic shelf as a whole, N fluxes from major rivers and estuaries exceed atmospheric deposition by a factor of 3.5–4.7, but this varies widely among regions of the shelf. For example, on the U.S. Atlantic shelf and on the northwest European shelf, atmospheric deposition of N may exceed estuarine exports. Denitrification in shelf sediments exceeds the combined N input from land and atmosphere by a factor of 1.4–2.2. This deficit must be met by a flux of N from the deeper ocean. Burial of organic matter fixed on the shelf removes only a small fraction of the total N and P input (2–12% of N from land and atmosphere; 1–17% of P), but it may be a significant loss for P in the North Sea and some other regions. The removal of N and P in fisheries landings is very small. The gross exchange of N and P between the shelf and the open ocean is much larger than inputs from land and, for the North Atlantic shelf as a whole, it may be much larger than the N and P removed through denitrification, burial, and fisheries. Overall, the North Atlantic continental shelf appears to remove some 700–950· 109 moles of N each year from the deep ocean and to transport somewhere between 18 and 30 · 109 moles of P to the open sea. If the N and P associated with riverine sediments deposited on the continental slope are included in the total balance, the net flux of N to the shelf is reduced by 60 · 109 moles y−1 and the P flux to the ocean is increased by 20 · 109 moles y−1. These conclusions are quite tentative, however, because of large uncertainties in our estimates of some important terms in the shelf mass balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 8 (1989), S. 185-204 
    ISSN: 1573-515X
    Keywords: phosphorus ; nitrogen ; wetlands ; beaver ponds ; conifer swamp ; sedge fen ; Precambrian shield ; nutrient retention ; mass balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Phosphorus and nitrogen mass balances of five wetlands (two beaver ponds, two conifer-Sphagnum swamps and one sedge fen) situated in three catchments in central Ontario, Canada, were measured. Monthly and annual input-output budgets of total phosphorus (TP), total nitrogen (TN), total organic nitrogen (TON), total inorganic nitrogen (TIN), ammonium ion (NH4 + -N), nitrate (NO 3 − -N) and dissolved organic carbon (DOC) were estimated for the five wetlands during the 1982–83 and 1983–84 water years. Except for the deepest beaver pond (3.2 m) which had annual TP retention of −44% (−0.030 ± 0.015 g m−2 yr−1), the wetlands retained 〈 0.001 to 0.015 g M−2 yr−1 ; however, this wasless than 20% of the inputs and the estimated budget uncertainties were equal to or greater than the retention rates. Annual TN retentions ranged from −0.44 to 0.56 g m−2 yr−1 (−12 to 4%) but were not significantly different from zero. The wetlands transformed nitrogen by retaining TIN (16 to 80% RT) and exporting an equivalent amount as TON (−7 to 102% RT). The beaver ponds, however, retained NO 3 − while NH 4 + was passed through or the outputs exceeded the inputs. In contrast, the conifer swamps retained both NH 4 + and NO 3 − . DOC fluxes into and out of the beaver ponds were equal (−18 and 4% RT) but output from the conifer swamps exceeded input by 〉 90%. Marked seasonal trends in nutrient retention were observed. Nutrient retention coincided with low stream flow, increased evapotranspiration and biotic uptake during the summer. Net nutrient export occurred during the winter and spring when stream flows were highest and biotic uptake was low.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-515X
    Keywords: Chihuahuan desert ; desert ; desertification ; grassland ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/1) and lowest in bare plots in the shrubland (0.55 mg/1). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands — consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-515X
    Keywords: carbon ; nitrogen ; Ohio River ; phosphorus ; Red field ratios ; dissolved organic matter ; rivers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A 12-month study was conducted to measure the concentrations ofdissolved organic matter (DOC, TDN, TDP) in four sites within a119 km long reach of the Ohio River, near Louisville, KY. In thisstudy we test whether specific geomorphological and biologicalfactors influenced variations in dissolved organic matter.Concentrations of DOC in the river averaged ≈1200μmol/L, and varied by nearly two orders of magnitudeseasonally (mean DOC during base flow ≈620 μmol/L).Peak periods for DOC at all sites were during April–May. Thesite nearest a navigation dam (deeper, lower current velocities)had significantly lower concentrations of TDN and greater C:Nratios than upstream sites. The largest tributary entering thisreach (Kentucky River) had no significant effect on levels of DOMin the main river, despite having significantly greaterconcentrations of TDN and lower levels of DOC during most monthsof the year. Concentrations of DOC, TDN, and TDP were notsignificantly different in littoral and pelagic habitats at allsites studied, suggesting little floodplain influence on DOM inthis constricted-channel section of the Ohio River. C:N ratios ofDOM in the Ohio were significantly different among seasons; C:Nexceeded or equaled Redfield ratios in summer and fall (6 to 10),but were below Redfield (1.8 to 3.0) during winter and spring.Regression models suggest that total phytoplankton densities andflow conditions are the two most important factors regulating DOMin this very large river.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...