ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-18
    Description: Strigolactones (SLs), a newly discovered class of carotenoid-derived phytohormones, are essential for developmental processes that shape plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signalling mechanisms of SL remain poorly understood. Here we show that DWARF 53 (D53) acts as a repressor of SL signalling and that SLs induce its degradation. We find that the rice (Oryza sativa) d53 mutant, which produces an exaggerated number of tillers compared to wild-type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the alpha/beta hydrolase protein DWARF 14 (D14) and the F-box protein DWARF 3 (D3), two previously identified signalling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signalling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Feng -- Lin, Qibing -- Zhu, Lihong -- Ren, Yulong -- Zhou, Kunneng -- Shabek, Nitzan -- Wu, Fuqing -- Mao, Haibin -- Dong, Wei -- Gan, Lu -- Ma, Weiwei -- Gao, He -- Chen, Jun -- Yang, Chao -- Wang, Dan -- Tan, Junjie -- Zhang, Xin -- Guo, Xiuping -- Wang, Jiulin -- Jiang, Ling -- Liu, Xi -- Chen, Weiqi -- Chu, Jinfang -- Yan, Cunyu -- Ueno, Kotomi -- Ito, Shinsaku -- Asami, Tadao -- Cheng, Zhijun -- Wang, Jie -- Lei, Cailin -- Zhai, Huqu -- Wu, Chuanyin -- Wang, Haiyang -- Zheng, Ning -- Wan, Jianmin -- R01 CA107134/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 19;504(7480):406-10. doi: 10.1038/nature12878. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China [2] National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China. ; 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1-2 Beichen West Road, Beijing 100101, China. ; Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Lactones/*metabolism ; Molecular Sequence Data ; Mutation/genetics ; Oryza/genetics/*metabolism ; Phenotype ; Plant Growth Regulators/*metabolism ; Plant Proteins/genetics/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Proteolysis ; SKP Cullin F-Box Protein Ligases/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-16
    Description: Salicylic acid (SA) is a plant immune signal produced after pathogen challenge to induce systemic acquired resistance. It is the only major plant hormone for which the receptor has not been firmly identified. Systemic acquired resistance in Arabidopsis requires the transcription cofactor nonexpresser of PR genes 1 (NPR1), the degradation of which acts as a molecular switch. Here we show that the NPR1 paralogues NPR3 and NPR4 are SA receptors that bind SA with different affinities. NPR3 and NPR4 function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the Arabidopsis npr3 npr4 double mutant accumulates higher levels of NPR1, and is insensitive to induction of systemic acquired resistance. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Zheng Qing -- Yan, Shunping -- Saleh, Abdelaty -- Wang, Wei -- Ruble, James -- Oka, Nodoka -- Mohan, Rajinikanth -- Spoel, Steven H -- Tada, Yasuomi -- Zheng, Ning -- Dong, Xinnian -- CA107134/CA/NCI NIH HHS/ -- GM069594-05/GM/NIGMS NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 GM069594/GM/NIGMS NIH HHS/ -- T32 GM008268/GM/NIGMS NIH HHS/ -- T32GM008268-23/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 16;486(7402):228-32. doi: 10.1038/nature11162.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, PO Box 90338, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699612" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/immunology/*metabolism ; Arabidopsis Proteins/genetics/metabolism ; Mutation ; Protein Binding ; Salicylic Acid/*metabolism ; *Signal Transduction ; Two-Hybrid System Techniques ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...