ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-03
    Description: Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of much needed specific antiviral therapies and an effective vaccine has been hampered by the lack of a convenient small animal model. The determinants restricting HCV tropism to human and chimpanzee hosts are unknown. Replication of the viral RNA has been demonstrated in mouse cells, but these cells are not infectable with either lentiviral particles bearing HCV glycoproteins (HCVpp) or HCV produced in cell culture (HCVcc) (A.P., M.E. and C.M.R., unpublished observations), suggesting that there is a block at the level of entry. Here we show, using an iterative complementary DNA library screening approach, that human occludin (OCLN) is an essential HCV cell entry factor that is able to render murine cells infectable with HCVpp. Similarly, OCLN is required for the HCV-susceptibility of human cells, because its overexpression in uninfectable cells specifically enhanced HCVpp uptake, whereas its silencing in permissive cells impaired both HCVpp and HCVcc infection. In addition to OCLN, HCVpp infection of murine cells required expression of the previously identified HCV entry factors CD81 (ref. 4), scavenger receptor class B type I (SR-BI, also known as SCARB1) and claudin-1 (CLDN1). Although the mouse versions of SR-BI and CLDN1 function at least as well as the human proteins in promoting HCV entry, both OCLN and CD81 must be of human origin to allow efficient infection. The species-specific determinants of OCLN were mapped to its second extracellular loop. The identification of OCLN as a new HCV entry factor further highlights the importance of the tight junction complex in the viral entry process, and provides an important advance towards efforts to develop small animal models for HCV.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ploss, Alexander -- Evans, Matthew J -- Gaysinskaya, Valeriya A -- Panis, Maryline -- You, Hana -- de Jong, Ype P -- Rice, Charles M -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI072613-01/AI/NIAID NIH HHS/ -- R01 AI072613-02/AI/NIAID NIH HHS/ -- R01 AI072613-03/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):882-6. doi: 10.1038/nature07684. Epub 2009 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182773" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antigens, CD/metabolism ; Antigens, CD81 ; CHO Cells ; Cell Line ; Cricetinae ; Cricetulus ; Gene Expression Regulation ; Hepacivirus/*physiology ; Hepatitis C/*virology ; Humans ; Membrane Proteins/*metabolism ; Mice ; Occludin ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-10
    Description: Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein-Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)-a macrophage-associated autoimmune disease-than randomly selected immune response genes (P = 8.85 x 10(-6)). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 x 10(-10); odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heinig, Matthias -- Petretto, Enrico -- Wallace, Chris -- Bottolo, Leonardo -- Rotival, Maxime -- Lu, Han -- Li, Yoyo -- Sarwar, Rizwan -- Langley, Sarah R -- Bauerfeind, Anja -- Hummel, Oliver -- Lee, Young-Ae -- Paskas, Svetlana -- Rintisch, Carola -- Saar, Kathrin -- Cooper, Jason -- Buchan, Rachel -- Gray, Elizabeth E -- Cyster, Jason G -- Cardiogenics Consortium -- Erdmann, Jeanette -- Hengstenberg, Christian -- Maouche, Seraya -- Ouwehand, Willem H -- Rice, Catherine M -- Samani, Nilesh J -- Schunkert, Heribert -- Goodall, Alison H -- Schulz, Herbert -- Roider, Helge G -- Vingron, Martin -- Blankenberg, Stefan -- Munzel, Thomas -- Zeller, Tanja -- Szymczak, Silke -- Ziegler, Andreas -- Tiret, Laurence -- Smyth, Deborah J -- Pravenec, Michal -- Aitman, Timothy J -- Cambien, Francois -- Clayton, David -- Todd, John A -- Hubner, Norbert -- Cook, Stuart A -- 061858/Wellcome Trust/United Kingdom -- 076113/Wellcome Trust/United Kingdom -- 089989/Wellcome Trust/United Kingdom -- MC_U120061454/Medical Research Council/United Kingdom -- MC_U120085815/Medical Research Council/United Kingdom -- MC_U120097112/Medical Research Council/United Kingdom -- P301/10/0290/British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Sep 23;467(7314):460-4. doi: 10.1038/nature09386. Epub 2010 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck-Center for Molecular Medicine (MDC), Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20827270" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes, Human, Pair 13/genetics ; Chromosomes, Mammalian/genetics ; Diabetes Mellitus, Type 1/*genetics/immunology ; Gene Regulatory Networks/genetics ; Genetic Loci/*genetics ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Humans ; Immunity, Innate/*genetics ; Inflammation/genetics/immunology ; Interferon Regulatory Factor-7/immunology ; Macrophages/immunology/metabolism ; Organ Specificity ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/genetics ; Rats ; Receptors, G-Protein-Coupled/genetics/metabolism ; Viruses/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-12
    Description: Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicodeme, Edwige -- Jeffrey, Kate L -- Schaefer, Uwe -- Beinke, Soren -- Dewell, Scott -- Chung, Chun-Wa -- Chandwani, Rohit -- Marazzi, Ivan -- Wilson, Paul -- Coste, Herve -- White, Julia -- Kirilovsky, Jorge -- Rice, Charles M -- Lora, Jose M -- Prinjha, Rab K -- Lee, Kevin -- Tarakhovsky, Alexander -- England -- Nature. 2010 Dec 23;468(7327):1119-23. doi: 10.1038/nature09589. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche GSK, 27 Avenue du Quebec, 91140 Villebon Sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Animals ; Anti-Inflammatory Agents/chemistry/*pharmacology/therapeutic use ; Benzodiazepines ; Cells, Cultured ; Epigenomics ; Gene Expression Regulation/*drug effects ; Genome-Wide Association Study ; Heterocyclic Compounds with 4 or More Rings/chemistry/*pharmacology/therapeutic ; use ; Histone Deacetylase Inhibitors/pharmacology ; Hydroxamic Acids/pharmacology ; *Inflammation/drug therapy/prevention & control ; Kaplan-Meier Estimate ; Lipopolysaccharides/pharmacology ; Macrophages/*drug effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Salmonella Infections/drug therapy/immunology/physiopathology/prevention & ; control ; Salmonella typhimurium ; Sepsis/drug therapy/prevention & control ; Shock, Septic/drug therapy/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-13
    Description: Since its discovery in 1989, efforts to grow clinical isolates of the hepatitis C virus (HCV) in cell culture have met with limited success. Only the JFH-1 isolate has the capacity to replicate efficiently in cultured hepatoma cells without cell culture-adaptive mutations. We hypothesized that cultured cells lack one or more factors required for the replication of clinical isolates. To identify the missing factors, we transduced Huh-7.5 human hepatoma cells with a pooled lentivirus-based human complementary DNA (cDNA) library, transfected the cells with HCV subgenomic replicons lacking adaptive mutations, and selected for stable replicon colonies. This led to the identification of a single cDNA, SEC14L2, that enabled RNA replication of diverse HCV genotypes in several hepatoma cell lines. This effect was dose-dependent, and required the continuous presence of SEC14L2. Full-length HCV genomes also replicated and produced low levels of infectious virus. Remarkably, SEC14L2-expressing Huh-7.5 cells also supported HCV replication following inoculation with patient sera. Mechanistic studies suggest that SEC14L2 promotes HCV infection by enhancing vitamin E-mediated protection against lipid peroxidation. This provides a foundation for development of in vitro replication systems for all HCV isolates, creating a useful platform to dissect the mechanisms by which cell culture-adaptive mutations act.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeed, Mohsan -- Andreo, Ursula -- Chung, Hyo-Young -- Espiritu, Christine -- Branch, Andrea D -- Silva, Jose M -- Rice, Charles M -- DA031095/DA/NIDA NIH HHS/ -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 CA057973/CA/NCI NIH HHS/ -- R01 DA031095/DA/NIDA NIH HHS/ -- R01 DK090317/DK/NIDDK NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI099284/AI/NIAID NIH HHS/ -- R01CA057973/CA/NCI NIH HHS/ -- R01DK090317/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):471-5. doi: 10.1038/nature14899. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065, USA. ; Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266980" target="_blank"〉PubMed〈/a〉
    Keywords: Antioxidants/metabolism ; Carcinoma, Hepatocellular/genetics/*metabolism/*virology ; Carrier Proteins/genetics/*metabolism ; *Cell Culture Techniques ; Cell Line, Tumor ; Cells, Cultured ; Gene Library ; Genome, Viral/genetics ; *Genotype ; Hepacivirus/*genetics/*growth & development/physiology ; Host-Derived Cellular Factors/genetics/*metabolism ; Humans ; Lentivirus/genetics ; Lipid Peroxidation ; Lipoproteins/genetics/*metabolism ; Mutation/genetics ; RNA, Viral/biosynthesis/genetics ; Replicon/genetics ; Serum/virology ; Trans-Activators/genetics/*metabolism ; Transduction, Genetic ; *Virus Replication/genetics ; Vitamin E/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-12
    Description: The type I interferon response protects cells against invading viral pathogens. The cellular factors that mediate this defence are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery more than 25 years ago, only a few have been characterized with respect to antiviral activity. For most ISG products, little is known about their antiviral potential, their target specificity and their mechanisms of action. Using an overexpression screening approach, here we show that different viruses are targeted by unique sets of ISGs. We find that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities. To conduct the screen, more than 380 human ISGs were tested for their ability to inhibit the replication of several important human and animal viruses, including hepatitis C virus, yellow fever virus, West Nile virus, chikungunya virus, Venezuelan equine encephalitis virus and human immunodeficiency virus type-1. Broadly acting effectors included IRF1, C6orf150 (also known as MB21D1), HPSE, RIG-I (also known as DDX58), MDA5 (also known as IFIH1) and IFITM3, whereas more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT (also known as PBEF1), OASL, RTP4, TREX1 and UNC84B (also known as SUN2). Combined expression of pairs of ISGs showed additive antiviral effects similar to those of moderate type I interferon doses. Mechanistic studies uncovered a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E and MCOLN2, enhanced the replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic type I interferon system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoggins, John W -- Wilson, Sam J -- Panis, Maryline -- Murphy, Mary Y -- Jones, Christopher T -- Bieniasz, Paul -- Rice, Charles M -- AI057158/AI/NIAID NIH HHS/ -- AI064003/AI/NIAID NIH HHS/ -- DK081193/DK/NIDDK NIH HHS/ -- DK082155/DK/NIDDK NIH HHS/ -- F32 DK081193-01A1/DK/NIDDK NIH HHS/ -- F32 DK082155/DK/NIDDK NIH HHS/ -- F32 DK082155-01/DK/NIDDK NIH HHS/ -- R01 AI064003/AI/NIAID NIH HHS/ -- R01 AI064003-01/AI/NIAID NIH HHS/ -- U54 AI057158/AI/NIAID NIH HHS/ -- U54 AI057158-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 28;472(7344):481-5. doi: 10.1038/nature09907. Epub 2011 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21478870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Expression Profiling ; Gene Expression Regulation/*genetics/*immunology ; HEK293 Cells ; Humans ; Interferon Type I/*immunology ; Protein Biosynthesis ; Virus Replication ; Viruses/growth & development/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-06-10
    Description: Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorner, Marcus -- Horwitz, Joshua A -- Robbins, Justin B -- Barry, Walter T -- Feng, Qian -- Mu, Kathy -- Jones, Christopher T -- Schoggins, John W -- Catanese, Maria Teresa -- Burton, Dennis R -- Law, Mansun -- Rice, Charles M -- Ploss, Alexander -- F32DK081193/DK/NIDDK NIH HHS/ -- F32DK082155/DK/NIDDK NIH HHS/ -- R01 AI071084/AI/NIAID NIH HHS/ -- R01 AI071084-04/AI/NIAID NIH HHS/ -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI072613-05/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI079031-04/AI/NIAID NIH HHS/ -- R01 DK085713/DK/NIDDK NIH HHS/ -- R01 DK085713-03/DK/NIDDK NIH HHS/ -- R01AI071084/AI/NIAID NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI079031/AI/NIAID NIH HHS/ -- RC1 DK087193/DK/NIDDK NIH HHS/ -- RC1 DK087193-02/DK/NIDDK NIH HHS/ -- RC1DK087193/DK/NIDDK NIH HHS/ -- England -- Nature. 2011 Jun 8;474(7350):208-11. doi: 10.1038/nature10168.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21654804" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Animals ; Antibodies, Blocking/immunology ; Antigens, CD/genetics/metabolism ; Antigens, CD81 ; Cells, Cultured ; Claudin-1 ; *Disease Models, Animal ; Genotype ; Hepacivirus/genetics/metabolism/*physiology ; Hepatitis C/*genetics/*virology ; Hepatocytes/cytology/*metabolism/*virology ; Humans ; Immunization, Passive ; Membrane Proteins/genetics/metabolism ; Mice ; Receptors, Virus/genetics/metabolism ; Scavenger Receptors, Class B/genetics/metabolism ; Transfection ; Viral Tropism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-02
    Description: More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorner, Marcus -- Horwitz, Joshua A -- Donovan, Bridget M -- Labitt, Rachael N -- Budell, William C -- Friling, Tamar -- Vogt, Alexander -- Catanese, Maria Teresa -- Satoh, Takashi -- Kawai, Taro -- Akira, Shizuo -- Law, Mansun -- Rice, Charles M -- Ploss, Alexander -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 AI107301/AI/NIAID NIH HHS/ -- R01 CA057973/CA/NCI NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI079031/AI/NIAID NIH HHS/ -- R01AI099284/AI/NIAID NIH HHS/ -- R01CA057973/CA/NCI NIH HHS/ -- RC1 DK087193/DK/NIDDK NIH HHS/ -- RC1DK087193/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):237-41. doi: 10.1038/nature12427. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD81/genetics/metabolism ; Cell Line ; Cyclophilin A/genetics/metabolism ; *Disease Models, Animal ; *Genetic Engineering ; Hepacivirus/immunology/*physiology ; Hepatitis C/*genetics/immunology/*virology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Occludin/genetics/metabolism ; STAT1 Transcription Factor/deficiency ; Viremia/virology ; Virion/growth & development/physiology ; *Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-29
    Description: The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077721/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077721/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoggins, John W -- MacDuff, Donna A -- Imanaka, Naoko -- Gainey, Maria D -- Shrestha, Bimmi -- Eitson, Jennifer L -- Mar, Katrina B -- Richardson, R Blake -- Ratushny, Alexander V -- Litvak, Vladimir -- Dabelic, Rea -- Manicassamy, Balaji -- Aitchison, John D -- Aderem, Alan -- Elliott, Richard M -- Garcia-Sastre, Adolfo -- Racaniello, Vincent -- Snijder, Eric J -- Yokoyama, Wayne M -- Diamond, Michael S -- Virgin, Herbert W -- Rice, Charles M -- 099220/Wellcome Trust/United Kingdom -- AI057158/AI/NIAID NIH HHS/ -- AI057160/AI/NIAID NIH HHS/ -- AI083025/AI/NIAID NIH HHS/ -- AI091707/AI/NIAID NIH HHS/ -- AI095611/AI/NIAID NIH HHS/ -- AI104972/AI/NIAID NIH HHS/ -- DK095031/DK/NIDDK NIH HHS/ -- G0801822/Medical Research Council/United Kingdom -- GM076547/GM/NIGMS NIH HHS/ -- GM103511/GM/NIGMS NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- HHSN272200900041CU19/CU/CSP VA/ -- K01 DK095031/DK/NIDDK NIH HHS/ -- R00 AI095320/AI/NIAID NIH HHS/ -- R01 AI032972/AI/NIAID NIH HHS/ -- R01 AI091707/AI/NIAID NIH HHS/ -- R01 AI102597/AI/NIAID NIH HHS/ -- R01 AI104972/AI/NIAID NIH HHS/ -- T32 AI005284/AI/NIAID NIH HHS/ -- T32 AR007279/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 30;505(7485):691-5. doi: 10.1038/nature12862. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065, USA [2] Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA (J.W.S.); MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK (R.M.E.). ; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065, USA. ; Rheumatology Division, Department of Medicine, and Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Infectious Diseases Division, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Seattle Biomedical Research Institute, Seattle, Washington 98109, USA [2] Institute for Systems Biology, Seattle, Washington 98109, USA. ; Seattle Biomedical Research Institute, Seattle, Washington 98109, USA. ; Department of Microbiology and Immunology, Columbia University, New York, New York 10032, USA. ; Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA. ; 1] School of Biology, University of St Andrews, St Andrews, Scotland KY16 9ST, UK [2] Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA (J.W.S.); MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK (R.M.E.). ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Department of Medical Microbiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands. ; 1] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Infectious Diseases Division, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cluster Analysis ; DNA Viruses/immunology/pathogenicity ; Flow Cytometry ; Gene Library ; Immunity, Innate/*genetics/*immunology ; Interferon Regulatory Factor-3/immunology/metabolism ; Interferons/*immunology/metabolism ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Nucleotidyltransferases/deficiency/genetics/*immunology/*metabolism ; RNA Viruses/immunology/pathogenicity ; STAT1 Transcription Factor/metabolism ; Substrate Specificity ; Viruses/classification/*immunology/pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...