ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (37)
  • Alleles  (7)
  • Nature Publishing Group (NPG)  (38)
  • 1
    Publication Date: 2008-04-19
    Description: The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, David A -- Srinivasan, Maithreyan -- Egholm, Michael -- Shen, Yufeng -- Chen, Lei -- McGuire, Amy -- He, Wen -- Chen, Yi-Ju -- Makhijani, Vinod -- Roth, G Thomas -- Gomes, Xavier -- Tartaro, Karrie -- Niazi, Faheem -- Turcotte, Cynthia L -- Irzyk, Gerard P -- Lupski, James R -- Chinault, Craig -- Song, Xing-zhi -- Liu, Yue -- Yuan, Ye -- Nazareth, Lynne -- Qin, Xiang -- Muzny, Donna M -- Margulies, Marcel -- Weinstock, George M -- Gibbs, Richard A -- Rothberg, Jonathan M -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Apr 17;452(7189):872-6. doi: 10.1038/nature06884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18421352" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Computational Biology ; Genetic Predisposition to Disease/genetics ; Genetic Variation/*genetics ; Genome, Human/*genetics ; Genomics/economics/*methods/trends ; Genotype ; Humans ; Individuality ; Male ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Alignment ; Sequence Analysis, DNA/economics/*methods ; Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-26
    Description: Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tribolium Genome Sequencing Consortium -- Richards, Stephen -- Gibbs, Richard A -- Weinstock, George M -- Brown, Susan J -- Denell, Robin -- Beeman, Richard W -- Gibbs, Richard -- Bucher, Gregor -- Friedrich, Markus -- Grimmelikhuijzen, Cornelis J P -- Klingler, Martin -- Lorenzen, Marce -- Roth, Siegfried -- Schroder, Reinhard -- Tautz, Diethard -- Zdobnov, Evgeny M -- Muzny, Donna -- Attaway, Tony -- Bell, Stephanie -- Buhay, Christian J -- Chandrabose, Mimi N -- Chavez, Dean -- Clerk-Blankenburg, Kerstin P -- Cree, Andrew -- Dao, Marvin -- Davis, Clay -- Chacko, Joseph -- Dinh, Huyen -- Dugan-Rocha, Shannon -- Fowler, Gerald -- Garner, Toni T -- Garnes, Jeffrey -- Gnirke, Andreas -- Hawes, Alica -- Hernandez, Judith -- Hines, Sandra -- Holder, Michael -- Hume, Jennifer -- Jhangiani, Shalini N -- Joshi, Vandita -- Khan, Ziad Mohid -- Jackson, LaRonda -- Kovar, Christie -- Kowis, Andrea -- Lee, Sandra -- Lewis, Lora R -- Margolis, Jon -- Morgan, Margaret -- Nazareth, Lynne V -- Nguyen, Ngoc -- Okwuonu, Geoffrey -- Parker, David -- Ruiz, San-Juana -- Santibanez, Jireh -- Savard, Joel -- Scherer, Steven E -- Schneider, Brian -- Sodergren, Erica -- Vattahil, Selina -- Villasana, Donna -- White, Courtney S -- Wright, Rita -- Park, Yoonseong -- Lord, Jeff -- Oppert, Brenda -- Brown, Susan -- Wang, Liangjiang -- Weinstock, George -- Liu, Yue -- Worley, Kim -- Elsik, Christine G -- Reese, Justin T -- Elhaik, Eran -- Landan, Giddy -- Graur, Dan -- Arensburger, Peter -- Atkinson, Peter -- Beidler, Jim -- Demuth, Jeffery P -- Drury, Douglas W -- Du, Yu-Zhou -- Fujiwara, Haruhiko -- Maselli, Vincenza -- Osanai, Mizuko -- Robertson, Hugh M -- Tu, Zhijian -- Wang, Jian-jun -- Wang, Suzhi -- Song, Henry -- Zhang, Lan -- Werner, Doreen -- Stanke, Mario -- Morgenstern, Burkhard -- Solovyev, Victor -- Kosarev, Peter -- Brown, Garth -- Chen, Hsiu-Chuan -- Ermolaeva, Olga -- Hlavina, Wratko -- Kapustin, Yuri -- Kiryutin, Boris -- Kitts, Paul -- Maglott, Donna -- Pruitt, Kim -- Sapojnikov, Victor -- Souvorov, Alexandre -- Mackey, Aaron J -- Waterhouse, Robert M -- Wyder, Stefan -- Kriventseva, Evgenia V -- Kadowaki, Tatsuhiko -- Bork, Peer -- Aranda, Manuel -- Bao, Riyue -- Beermann, Anke -- Berns, Nicola -- Bolognesi, Renata -- Bonneton, Francois -- Bopp, Daniel -- Butts, Thomas -- Chaumot, Arnaud -- Denell, Robin E -- Ferrier, David E K -- Gordon, Cassondra M -- Jindra, Marek -- Lan, Que -- Lattorff, H Michael G -- Laudet, Vincent -- von Levetsow, Cornelia -- Liu, Zhenyi -- Lutz, Rebekka -- Lynch, Jeremy A -- da Fonseca, Rodrigo Nunes -- Posnien, Nico -- Reuter, Rolf -- Schinko, Johannes B -- Schmitt, Christian -- Schoppmeier, Michael -- Shippy, Teresa D -- Simonnet, Franck -- Marques-Souza, Henrique -- Tomoyasu, Yoshinori -- Trauner, Jochen -- Van der Zee, Maurijn -- Vervoort, Michel -- Wittkopp, Nadine -- Wimmer, Ernst A -- Yang, Xiaoyun -- Jones, Andrew K -- Sattelle, David B -- Ebert, Paul R -- Nelson, David -- Scott, Jeffrey G -- Muthukrishnan, Subbaratnam -- Kramer, Karl J -- Arakane, Yasuyuki -- Zhu, Qingsong -- Hogenkamp, David -- Dixit, Radhika -- Jiang, Haobo -- Zou, Zhen -- Marshall, Jeremy -- Elpidina, Elena -- Vinokurov, Konstantin -- Oppert, Cris -- Evans, Jay -- Lu, Zhiqiang -- Zhao, Picheng -- Sumathipala, Niranji -- Altincicek, Boran -- Vilcinskas, Andreas -- Williams, Michael -- Hultmark, Dan -- Hetru, Charles -- Hauser, Frank -- Cazzamali, Giuseppe -- Williamson, Michael -- Li, Bin -- Tanaka, Yoshiaki -- Predel, Reinhard -- Neupert, Susanne -- Schachtner, Joachim -- Verleyen, Peter -- Raible, Florian -- Walden, Kimberly K O -- Angeli, Sergio -- Foret, Sylvain -- Schuetz, Stefan -- Maleszka, Ryszard -- Miller, Sherry C -- Grossmann, Daniela -- BBS/B/12067/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/12067/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01 GM058634/GM/NIGMS NIH HHS/ -- R01 HD029594/HD/NICHD NIH HHS/ -- R01 HD029594-16/HD/NICHD NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):949-55. doi: 10.1038/nature06784. Epub 2008 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. stephenr@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18362917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Body Patterning/genetics ; Cytochrome P-450 Enzyme System/genetics ; DNA Transposable Elements/genetics ; Genes, Insect/*genetics ; Genome, Insect/*genetics ; Growth and Development/genetics ; Humans ; Insecticides/pharmacology ; Neurotransmitter Agents/genetics ; Oogenesis/genetics ; Phylogeny ; Proteome/genetics ; RNA Interference ; Receptors, G-Protein-Coupled/genetics ; Receptors, Odorant/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Taste/genetics ; Telomere/genetics ; Tribolium/classification/embryology/*genetics/physiology ; Vision, Ocular/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-14
    Description: Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cadwell, Ken -- Liu, John Y -- Brown, Sarah L -- Miyoshi, Hiroyuki -- Loh, Joy -- Lennerz, Jochen K -- Kishi, Chieko -- Kc, Wumesh -- Carrero, Javier A -- Hunt, Steven -- Stone, Christian D -- Brunt, Elizabeth M -- Xavier, Ramnik J -- Sleckman, Barry P -- Li, Ellen -- Mizushima, Noboru -- Stappenbeck, Thaddeus S -- Virgin, Herbert W 4th -- AI062773/AI/NIAID NIH HHS/ -- DK43351/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-13/DK/NIDDK NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- P30 DK043351-18/DK/NIDDK NIH HHS/ -- P30 DK052574-09/DK/NIDDK NIH HHS/ -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 AI062773/AI/NIAID NIH HHS/ -- R01 AI062773-01A1/AI/NIAID NIH HHS/ -- R01 AI062832/AI/NIAID NIH HHS/ -- R01 AI062832-04/AI/NIAID NIH HHS/ -- T32 AR007279/AR/NIAMS NIH HHS/ -- T32 AR007279-30/AR/NIAMS NIH HHS/ -- T32 AR07279/AR/NIAMS NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- U54 AI057160-010005/AI/NIAID NIH HHS/ -- U54 AI057160-05S10018/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):259-63. doi: 10.1038/nature07416. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849966" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Autophagy/*genetics ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Crohn Disease/genetics/pathology ; Exocytosis/genetics ; Homozygote ; Humans ; Mice ; Mice, Inbred C57BL ; Mutation ; Paneth Cells/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-10-14
    Description: During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yi -- Dentin, Renaud -- Chen, Danica -- Hedrick, Susan -- Ravnskjaer, Kim -- Schenk, Simon -- Milne, Jill -- Meyers, David J -- Cole, Phil -- Yates, John 3rd -- Olefsky, Jerrold -- Guarente, Leonard -- Montminy, Marc -- R37 GM037828/GM/NIGMS NIH HHS/ -- R37 GM037828-24/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):269-73. doi: 10.1038/nature07349. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849969" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; CREB-Binding Protein/metabolism ; Cell Line, Transformed ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Inhibitors/pharmacology ; Fasting/*physiology ; Forkhead Transcription Factors/metabolism ; Gene Expression Regulation/drug effects ; Gluconeogenesis/*physiology ; Heterocyclic Compounds with 4 or More Rings/pharmacology ; Humans ; Liver/metabolism ; Male ; Mice ; Mice, Knockout ; Nuclear Proteins/metabolism ; Sirtuin 1 ; Sirtuins/genetics/metabolism ; Stilbenes/pharmacology ; Trans-Activators/metabolism ; Transcription Factors ; Ubiquitin-Protein Ligases/metabolism ; p300-CBP Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yi -- England -- Nature. 2009 Sep 24;461(7263):484-5. doi: 10.1038/461484a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779441" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation/drug effects ; Humans ; Phosphorylation/drug effects ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Protein-Serine-Threonine Kinases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-15
    Description: In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr-Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jianming -- Adrian, Francisco J -- Jahnke, Wolfgang -- Cowan-Jacob, Sandra W -- Li, Allen G -- Iacob, Roxana E -- Sim, Taebo -- Powers, John -- Dierks, Christine -- Sun, Fangxian -- Guo, Gui-Rong -- Ding, Qiang -- Okram, Barun -- Choi, Yongmun -- Wojciechowski, Amy -- Deng, Xianming -- Liu, Guoxun -- Fendrich, Gabriele -- Strauss, Andre -- Vajpai, Navratna -- Grzesiek, Stephan -- Tuntland, Tove -- Liu, Yi -- Bursulaya, Badry -- Azam, Mohammad -- Manley, Paul W -- Engen, John R -- Daley, George Q -- Warmuth, Markus -- Gray, Nathanael S -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-03/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):501-6. doi: 10.1038/nature08675. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology, Seeley G. Mudd Building 628, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/metabolism/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; Benzamides ; Binding Sites ; Bone Marrow Transplantation ; Cell Line, Tumor ; Crystallization ; Disease Models, Animal ; Drug Resistance, Neoplasm/*drug effects ; Female ; Fusion Proteins, bcr-abl/*chemistry/genetics/metabolism ; Humans ; Imatinib Mesylate ; Inhibitory Concentration 50 ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug ; therapy/enzymology/*metabolism ; Male ; Mass Spectrometry ; Mice ; Models, Molecular ; Mutation/genetics ; Piperazines/chemistry/pharmacology ; Protein Structure, Tertiary ; Pyrimidines/chemistry/metabolism/pharmacology ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yongbo -- Li, Junsheng -- Stewart, C Neal Jr -- England -- Nature. 2015 Apr 16;520(7547):295. doi: 10.1038/520295c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chinese Research Academy of Environmental Sciences, Beijing, China. ; University of Tennessee, Knoxville, Tennessee, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25877196" target="_blank"〉PubMed〈/a〉
    Keywords: *Communication ; *Consumer Product Safety ; Food, Genetically Modified/*supply & distribution ; Humans ; *Public Opinion ; *Research Personnel
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-20
    Description: Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IkappaBzeta, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IkappaBzeta at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qian -- Zhao, Kai -- Shen, Qicong -- Han, Yanmei -- Gu, Yan -- Li, Xia -- Zhao, Dezhi -- Liu, Yiqi -- Wang, Chunmei -- Zhang, Xiang -- Su, Xiaoping -- Liu, Juan -- Ge, Wei -- Levine, Ross L -- Li, Nan -- Cao, Xuetao -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA173636/CA/NCI NIH HHS/ -- England -- Nature. 2015 Sep 17;525(7569):389-93. doi: 10.1038/nature15252. Epub 2015 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Molecular Biology &Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China. ; National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai 200433, China. ; Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26287468" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Chromatin/chemistry/genetics/metabolism ; Colitis/enzymology/immunology/metabolism ; DNA Methylation ; DNA-Binding Proteins/deficiency/*metabolism ; Dendritic Cells/cytology/metabolism ; Down-Regulation/genetics ; Epigenesis, Genetic ; Female ; HEK293 Cells ; Histone Deacetylase 2/*metabolism ; Histones/chemistry/metabolism ; Humans ; I-kappa B Proteins/metabolism ; Inflammation/enzymology/immunology/*metabolism ; Interleukin-6/*antagonists & inhibitors/*biosynthesis/genetics/immunology ; Macrophages/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins/deficiency/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-14
    Description: Intracellular ISG15 is an interferon (IFN)-alpha/beta-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-alpha/beta-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-gamma-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-alpha/beta immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutieres syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-alpha/beta signalling, resulting in the enhancement and amplification of IFN-alpha/beta responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-alpha/beta immunity. In humans, intracellular ISG15 is IFN-alpha/beta-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-alpha/beta and prevention of IFN-alpha/beta-dependent autoinflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xianqin -- Bogunovic, Dusan -- Payelle-Brogard, Beatrice -- Francois-Newton, Veronique -- Speer, Scott D -- Yuan, Chao -- Volpi, Stefano -- Li, Zhi -- Sanal, Ozden -- Mansouri, Davood -- Tezcan, Ilhan -- Rice, Gillian I -- Chen, Chunyuan -- Mansouri, Nahal -- Mahdaviani, Seyed Alireza -- Itan, Yuval -- Boisson, Bertrand -- Okada, Satoshi -- Zeng, Lu -- Wang, Xing -- Jiang, Hui -- Liu, Wenqiang -- Han, Tiantian -- Liu, Delin -- Ma, Tao -- Wang, Bo -- Liu, Mugen -- Liu, Jing-Yu -- Wang, Qing K -- Yalnizoglu, Dilek -- Radoshevich, Lilliana -- Uze, Gilles -- Gros, Philippe -- Rozenberg, Flore -- Zhang, Shen-Ying -- Jouanguy, Emmanuelle -- Bustamante, Jacinta -- Garcia-Sastre, Adolfo -- Abel, Laurent -- Lebon, Pierre -- Notarangelo, Luigi D -- Crow, Yanick J -- Boisson-Dupuis, Stephanie -- Casanova, Jean-Laurent -- Pellegrini, Sandra -- 1P01AI076210-01A1/AI/NIAID NIH HHS/ -- 309449/European Research Council/International -- 8UL1TR000043/TR/NCATS NIH HHS/ -- P01 AI076210/AI/NIAID NIH HHS/ -- P01 AI090935/AI/NIAID NIH HHS/ -- P01AI090935/AI/NIAID NIH HHS/ -- R00 AI106942/AI/NIAID NIH HHS/ -- R00AI106942-02/AI/NIAID NIH HHS/ -- R01 AI035237/AI/NIAID NIH HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- U19 AI083025/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):89-93. doi: 10.1038/nature13801. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Microbiology Training Area, Graduate School of Biomedical Sciences of Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA [2] Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy. ; Immunology Division and Pediatric Neurology Department, Hacettepe University Children's Hospital, 06100 Ankara, Turkey. ; Division of Infectious Diseases and Clinical Immunology, Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, 4739 Teheran, Iran. ; Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK. ; Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Sangzhi County People's Hospital, Sangzhi 427100, China. ; Genetics Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China. ; 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China [2] Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; Institut Pasteur, Bacteria-Cell Interactions Unit, 75724 Paris, France. ; CNRS UMR5235, Montpellier II University, Place Eugene Bataillon, 34095 Montpellier, France. ; Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada. ; Paris Descartes University, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, 75015 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [3] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; 1] Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Howard Hughes Medical Institute, New York, New York 10065, USA [4] Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France [5]. ; 1] Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307056" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alleles ; Child ; Cytokines/deficiency/genetics/*metabolism ; Endopeptidases/chemistry/metabolism ; Female ; Gene Expression Regulation ; Humans ; Inflammation/genetics/immunology/*prevention & control ; Interferon Type I/*immunology/metabolism ; Intracellular Space/*metabolism ; Male ; Pedigree ; S-Phase Kinase-Associated Proteins/metabolism ; Signal Transduction ; Ubiquitination ; Ubiquitins/deficiency/genetics/*metabolism ; Viruses/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...