ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (47)
  • Springer Nature  (17)
  • Institute of Physics (IOP)  (12)
  • Copernicus  (10)
  • Nature Publishing Group (NPG)  (8)
Sammlung
  • Artikel  (47)
Erscheinungszeitraum
Zeitschrift
  • 1
    Publikationsdatum: 2015-04-26
    Beschreibung: The plasticity of Mg is restricted at low temperatures because: (a) only a small number of deformation mechanisms can be activated, and (b) a preferred crystallographic orientation (texture) develops in wrought alloys, especially in flat-rolled sheets. This causes problems in thin sheet processing as well as component manufacturing from the sheet. In this study, different rolling speeds from 15 to 1000 m/min were employed to warm-roll AZ31B magnesium alloy to different reductions. The results show that AZ31B sheets rolled at 15 m/min and 100 ?C has fractured for reductions of more than 30% per pass. However, by increasing the rolling speed to 1000 m/min the rollability was improved significantly and the material can be rolled to reductions of more than 70% per pass. The results show that with increasing strain rate at 100?C, the splitting of basal poles was observed, indicating the activation of more contraction twins and secondary twins.
    Print ISSN: 1757-8981
    Digitale ISSN: 1757-899X
    Thema: Maschinenbau
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-01-16
    Beschreibung: Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm. Scientific Reports 4 doi: 10.1038/srep03706
    Digitale ISSN: 2045-2322
    Thema: Allgemeine Naturwissenschaft
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-01-24
    Beschreibung: The interaction between mesenchymal stem cells and steroids during inflammation Cell Death and Disease 5, e1009 (January 2014). doi:10.1038/cddis.2013.537 Authors: X Chen, Y Gan, W Li, J Su, Y Zhang, Y Huang, A I Roberts, Y Han, J Li, Y Wang & Y Shi
    Schlagwort(e): inflammationmesenchymal stem celltissue repairsteroidliver fibrosis
    Digitale ISSN: 2041-4889
    Thema: Biologie , Medizin
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-06-06
    Beschreibung: αNAC inhibition of the FADD-JNK axis plays anti-apoptotic role in multiple cancer cells Cell Death and Disease 5, e1282 (June 2014). doi:10.1038/cddis.2014.192 Authors: W Zeng, J Zhang, M Qi, C Peng, J Su, X Chen & Z Yuan
    Schlagwort(e): αNACFADDextrinsic apoptotic pathwayJNK pathway
    Digitale ISSN: 2041-4889
    Thema: Biologie , Medizin
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2018-10-12
    Beschreibung: Surface coarse structure is one of key factors affecting the superhydrophobicity, yet it’s not very clear that what kind of structure is the best for hydrophobicity. Herein in order to study the effect of surface coarse structure, eight kinds of spherical SiO 2 (20 nm, 60 nm, 200 nm, 500 nm, 1 μm, 2 μm, 5 μm and 10 μm) were taken as raw material respectively to explore the effect of particle size on the hydrophobic performance. SiO 2 was deposited on the glass substrate layer by layer using the electrostatic assembly method based on the reaction of amino and epoxy groups. The sample’s structure and properties were characterized respectively by scanning electron microscopy and contact angle measuring instrument. The relationship between SiO 2 particle size and surface hydrophobicity was explored and the superhydrophobic stability were tested. The results show that the surface of SiO 2 film layers are stacked together and arranged tightly, a...
    Print ISSN: 1755-1307
    Digitale ISSN: 1755-1315
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2010-06-11
    Beschreibung: The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carvajal-Vergara, Xonia -- Sevilla, Ana -- D'Souza, Sunita L -- Ang, Yen-Sin -- Schaniel, Christoph -- Lee, Dung-Fang -- Yang, Lei -- Kaplan, Aaron D -- Adler, Eric D -- Rozov, Roye -- Ge, Yongchao -- Cohen, Ninette -- Edelmann, Lisa J -- Chang, Betty -- Waghray, Avinash -- Su, Jie -- Pardo, Sherly -- Lichtenbelt, Klaske D -- Tartaglia, Marco -- Gelb, Bruce D -- Lemischka, Ihor R -- 5R01GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):808-12. doi: 10.1038/nature09005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA. xcarvajal@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535210" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adult ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/metabolism ; Enzyme Activation ; Female ; Fibroblasts/metabolism/pathology ; Gene Expression Profiling ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/enzymology/metabolism/*pathology ; LEOPARD Syndrome/drug therapy/metabolism/*pathology ; Male ; Mitogen-Activated Protein Kinases/metabolism ; *Models, Biological ; Myocytes, Cardiac/metabolism/pathology ; NFATC Transcription Factors/genetics/metabolism ; Octamer Transcription Factor-3/genetics ; Phosphoproteins/analysis ; Polymerase Chain Reaction ; *Precision Medicine ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics/metabolism ; SOXB1 Transcription Factors/genetics
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-06-19
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Zhu -- Guan, Dabo -- Moore, Scott -- Lee, Henry -- Su, Jun -- Zhang, Qiang -- England -- Nature. 2015 Jun 18;522(7556):279-81. doi: 10.1038/522279a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China. [2] John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts, USA. ; 1] School of International Development, University of East Anglia, Norwich, UK. [2] Center for Earth System Science, Tsinghua University, Beijing, China. ; John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts, USA. ; School of Public Policy and Management, Tsinghua University, Beijing, China. ; Center for Earth System Science, Tsinghua University, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26085256" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2015-07-16
    Beschreibung: The prediction and synthesis of new crystal structures enable the targeted preparation of materials with desired properties. Among porous solids, this has been achieved for metal-organic frameworks, but not for the more widely applicable zeolites, where new materials are usually discovered using exploratory synthesis. Although millions of hypothetical zeolite structures have been proposed, not enough is known about their synthesis mechanism to allow any given structure to be prepared. Here we present an approach that combines structure solution with structure prediction, and inspires the targeted synthesis of new super-complex zeolites. We used electron diffraction to identify a family of related structures and to discover the structural 'coding' within them. This allowed us to determine the complex, and previously unknown, structure of zeolite ZSM-25 (ref. 8), which has the largest unit-cell volume of all known zeolites (91,554 cubic angstroms) and demonstrates selective CO2 adsorption. By extending our method, we were able to predict other members of a family of increasingly complex, but structurally related, zeolites and to synthesize two more-complex zeolites in the family, PST-20 and PST-25, with much larger cell volumes (166,988 and 275,178 cubic angstroms, respectively) and similar selective adsorption properties. Members of this family have the same symmetry, but an expanding unit cell, and are related by hitherto unrecognized structural principles; we call these family members embedded isoreticular zeolite structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Peng -- Shin, Jiho -- Greenaway, Alex G -- Min, Jung Gi -- Su, Jie -- Choi, Hyun June -- Liu, Leifeng -- Cox, Paul A -- Hong, Suk Bong -- Wright, Paul A -- Zou, Xiaodong -- England -- Nature. 2015 Aug 6;524(7563):74-8. doi: 10.1038/nature14575. Epub 2015 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden [2] Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-106 91 Stockholm, Sweden. ; Centre for Ordered Nanoporous Materials Synthesis, School of Environmental Science and Engineering, POSTECH, Pohang 790-784, South Korea. ; EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK. ; School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26176918" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2012-03-23
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Jianxin -- Lu, Cheng -- England -- Nature. 2012 Mar 21;483(7390):407. doi: 10.1038/483407c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22437601" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): *Culture ; *Research Design
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2015-07-23
    Beschreibung: Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane emissions from paddies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, J -- Hu, C -- Yan, X -- Jin, Y -- Chen, Z -- Guan, Q -- Wang, Y -- Zhong, D -- Jansson, C -- Wang, F -- Schnurer, A -- Sun, C -- England -- Nature. 2015 Jul 30;523(7562):602-6. doi: 10.1038/nature14673. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China [2] Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden. ; Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden. ; 1] Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden [2] Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China. ; Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China. ; The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, PO Box 999, K8-93 Richland, Washington 99352, USA. ; Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200336" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Agriculture/methods/trends ; Atmosphere/chemistry ; Biomass ; Carbon Cycle ; China ; Conservation of Natural Resources/methods ; Food Supply/methods ; Genotype ; Global Warming/prevention & control ; Greenhouse Effect/*prevention & control ; Hordeum/*genetics ; Methane/biosynthesis/*metabolism ; Molecular Sequence Data ; Oryza/genetics/growth & development/*metabolism ; Phenotype ; Photosynthesis ; Plant Components, Aerial/metabolism ; Plant Proteins/genetics/*metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Rhizosphere ; Seeds/metabolism ; Starch/biosynthesis/*metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...