ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (65)
  • Male  (48)
  • Letters  (17)
  • Nature Publishing Group (NPG)  (48)
  • National Academy of Sciences  (17)
  • American Geophysical Union (AGU)
Collection
  • Articles  (65)
Publisher
Years
  • 1
    Publication Date: 2013-10-02
    Description: After calcium silicate amendment to an entire watershed at the Hubbard Brook Experimental Forest, evapotranspiration (ET) increased by ∼20% for 2 y, broadly attributed to a fertilization of tree physiology (1). We suggested that the increase in ET most likely arose from enhanced transpiration due to increased stomatal conductance (gs)...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-23
    Description: The study by Newsome et al. (1) presented an approach to evaluating the historic ecological role of bald eagles (Haliaeetus leucocephalus) on the California Channel Islands (CI). Unfortunately, they ignore an alternative explanation for some of their data and overinterpret their results, leading to conclusions that are not the most parsimonious (1).First, Newsome et al. (1) incorrectly dismissed two prehistoric eagles with a stable isotope signature, suggesting “heavy reliance on terrestrial prey” as “migrants from the mainland.” They do so by arguing that large terrestrial prey would not have been available to resident CI eagles when their specimens were preserved....
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-27
    Description: Goldfeld et al. (1) presented modeling results on restoring 3D structures of the intra- and extracellular loops in bovine rhodopsin (bRh), human A2A adenosine receptor (A2Ar), turkey β1-adrenergic receptor (β1AR), and human β2-adrenergic receptor (β2AR). In all cases, the lowest energy conformers of the loops matched the corresponding X-ray structures with excellent rmsd values. The extracellular loops for the same receptors were modeled in our article previously (2) with the use of a much less sophisticated modeling procedure. Goldfeld et al. (1) emphasized substantially better accuracy of reproducing the X-ray structures of the loops, especially larger loops, in their study...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-15
    Description: Lincoln et al. (1) claim that Marine Group II Euryarchaeota (MG-II) are significant contributors to glycerol dibiphytanyl glycerol tetraether (GDGT) lipids in the ocean and biosynthesize crenarchaeol, a membrane lipid generally attributed to Thaumarchaeota (MG-I). The authors present two lines of convergent evidence for their far-reaching claim. The first line...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-19
    Description: We developed a nonhuman primate model to study whether pertussis vaccination is able to disrupt Bordetella pertussis colonization and transmission, and demonstrated that baboons vaccinated with the acellular pertussis vaccines (aP) were protected from classic pertussis symptoms (i.e., coughing and leukocytosis) but were highly colonized and transmitted pertussis to contacts...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-08-23
    Description: Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745972/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745972/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tseng, Yu-Hua -- Kokkotou, Efi -- Schulz, Tim J -- Huang, Tian Lian -- Winnay, Jonathon N -- Taniguchi, Cullen M -- Tran, T Thien -- Suzuki, Ryo -- Espinoza, Daniel O -- Yamamoto, Yuji -- Ahrens, Molly J -- Dudley, Andrew T -- Norris, Andrew W -- Kulkarni, Rohit N -- Kahn, C Ronald -- K08 DK064906/DK/NIDDK NIH HHS/ -- K08 DK64906/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-13/DK/NIDDK NIH HHS/ -- P30 DK46200/DK/NIDDK NIH HHS/ -- R01 DK 060837/DK/NIDDK NIH HHS/ -- R01 DK077097/DK/NIDDK NIH HHS/ -- R01 DK077097-01A1/DK/NIDDK NIH HHS/ -- R01 DK077097-02/DK/NIDDK NIH HHS/ -- R01 DK67536/DK/NIDDK NIH HHS/ -- R21 DK070722/DK/NIDDK NIH HHS/ -- R21 DK070722-01/DK/NIDDK NIH HHS/ -- R21 DK070722-02/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):1000-4. doi: 10.1038/nature07221.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Obesity and Hormone Action, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA. yu-hua.tseng@joslin.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719589" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; *Adipogenesis ; Adipose Tissue, Brown/*growth & development/*metabolism ; Adipose Tissue, White/growth & development ; Animals ; Bone Morphogenetic Protein 7 ; Bone Morphogenetic Proteins/*metabolism ; Cell Line ; *Energy Metabolism/genetics ; Male ; Mesenchymal Stromal Cells/cytology/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mitochondria/physiology ; Thermogenesis ; Transforming Growth Factor beta/*metabolism ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-05-09
    Description: Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Ji-Song -- Haggarty, Stephen J -- Giacometti, Emanuela -- Dannenberg, Jan-Hermen -- Joseph, Nadine -- Gao, Jun -- Nieland, Thomas J F -- Zhou, Ying -- Wang, Xinyu -- Mazitschek, Ralph -- Bradner, James E -- DePinho, Ronald A -- Jaenisch, Rudolf -- Tsai, Li-Huei -- R01 DA028301/DA/NIDA NIH HHS/ -- R01 DA028301-02/DA/NIDA NIH HHS/ -- R01 NS051874/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 7;459(7243):55-60. doi: 10.1038/nature07925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Butyrates/pharmacology ; Dendritic Spines/physiology ; Electrical Synapses/*physiology ; Female ; Gene Expression Regulation ; Hippocampus/metabolism ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/deficiency/genetics/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Male ; Memory/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons/metabolism ; Promoter Regions, Genetic/genetics ; Repressor Proteins/antagonists & inhibitors/genetics/*metabolism ; Sodium/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-08-28
    Description: Sex in birds is chromosomally based, as in mammals, but the sex chromosomes are different and the mechanism of avian sex determination has been a long-standing mystery. In the chicken and all other birds, the homogametic sex is male (ZZ) and the heterogametic sex is female (ZW). Two hypotheses have been proposed for the mechanism of avian sex determination. The W (female) chromosome may carry a dominant-acting ovary determinant. Alternatively, the dosage of a Z-linked gene may mediate sex determination, two doses being required for male development (ZZ). A strong candidate avian sex-determinant under the dosage hypothesis is the conserved Z-linked gene, DMRT1 (doublesex and mab-3-related transcription factor 1). Here we used RNA interference (RNAi) to knock down DMRT1 in early chicken embryos. Reduction of DMRT1 protein expression in ovo leads to feminization of the embryonic gonads in genetically male (ZZ) embryos. Affected males show partial sex reversal, characterized by feminization of the gonads. The feminized left gonad shows female-like histology, disorganized testis cords and a decline in the testicular marker, SOX9. The ovarian marker, aromatase, is ectopically activated. The feminized right gonad shows a more variable loss of DMRT1 and ectopic aromatase activation, suggesting differential sensitivity to DMRT1 between left and right gonads. Germ cells also show a female pattern of distribution in the feminized male gonads. These results indicate that DMRT1 is required for testis determination in the chicken. Our data support the Z dosage hypothesis for avian sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Craig A -- Roeszler, Kelly N -- Ohnesorg, Thomas -- Cummins, David M -- Farlie, Peter G -- Doran, Timothy J -- Sinclair, Andrew H -- England -- Nature. 2009 Sep 10;461(7261):267-71. doi: 10.1038/nature08298. Epub 2009 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia. craig.smith@mcri.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19710650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Line ; Chick Embryo ; Chickens/*genetics/*physiology ; Disorders of Sex Development ; Down-Regulation ; Female ; Gene Dosage/genetics ; Male ; MicroRNAs/genetics/metabolism ; Models, Genetic ; Ovary/embryology/metabolism ; RNA Interference ; SOX9 Transcription Factor/genetics/metabolism ; *Sex Characteristics ; Sex Chromosomes/*genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/deficiency/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...