ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (742)
  • Springer  (294)
  • American Chemical Society  (268)
  • Institute of Physics  (95)
  • American Chemical Society (ACS)  (61)
  • American Geophysical Union  (52)
  • Oxford University Press  (43)
  • MDPI Publishing  (37)
Collection
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 146 (1996), S. 533-549 
    ISSN: 1420-9136
    Keywords: Lower mantle ; seismic tomography ; thermoelasticiti ; composition models ; geodynamics ; shear modulus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We estimate (ϖμ/ϖT) P of the lower mantle at seismic frequencies using two distinct approaches by combining ambient laboratory measurements on lower mantle minerals with seismic data. In the first approach, an upper bound is estimated for |(ϖμ/ϖT) P | by comparing the shear modulus (μ) profile of PREM with laboratory room-temperature data of μ extrapolated to high pressures. The second approach employs a seismic tomography constraint (ϖ lnV S /ϖ lnV P ) P =1.8–2, which directly relates (ϖμ/ϖT) P with (ϖK S /ϖT) P . An average (ϖK S /ϖT) P can be obtained by comparing the well-established room-temperature compression data for lower mantle minerals with theK S profile of PREM along several possible adiabats. Both (ϖK S /ϖT) and (ϖμ/ϖT) depend on silicon content [or (Mg+Fe)/Sil of the model. For various compositions, the two approaches predict rather distinct (ϖμ/ϖT) P vs. (ϖK S /ϖT) P curves, which intersect at a composition similar to pyrolite with (ϖμ/ϖT) P =−0.02 to −0.035 and (ϖK S /ϖT) P =−0.015 to −0.020 GPa/K. The pure perovskite model, on the other hand, yields grossly inconsistent results using the two approaches. We conclude that both vertical and lateral variations in seismic velocities are consistent with variation due to pressure, temperature, and phase transformations of a uniform composition. Additional physical properties of a pyrolite lower mantle are further predicted. Lateral temperature variations are predicted to be about 100–250 K, and the ratio of (ϖ lnp/ϖ lnV S ) P around 0.13 and 0.26. All of these parameters increase slightly with depth if the ratio of (ϖ lnV S /ϖ lnV P ) P remains constant throughout the lower mantle. These predicted values are in excellent agreement with geodynamic analyses, in which the ratios (ϖ ln ϱ/ϖ lnV S ) P and (ϖ ϱ/ϖ lnV S ) P are free parameters arbitrarily adjusted to fit the tomography and geoid data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9136
    Keywords: High pressure ; pressure calibration ; ZnTe ; synchrotron X-ray source ; DIA type cubic anvil apparatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Pressure behavior of ZnTe at room temperature was studied using an X-ray energy dispersive method on a DIA type cubic anvil apparatus (SAM-85) at NSLS-X17B1. By using powdered polyethylene, the sample and NaCl for a pressure scale were held under quasihydrostatic conditions, which were confirmed by X-ray diffraction method. Two high-pressure phase transitions were confirmed using X-ray powder diffraction simultaneously with electrical resistance measurements. The phase transition pressures under quasihydrostatic conditions were determined to be 9.6 GPa, at which the resistance increased, and 12.0 GPa, which was the midpoint of a large resistance decrease. Errors in the pressure determinations were estimated to be less than 0.2 GPa. These pressure values may depend on grain size and anisotropic stress effects on the calibrant. From X-ray observation of ZnTe, the bulk modulus of the zinc blende structure was calculated to beK 0=51(3) GPa andK 0 ′ =3.6(0.8), and the first transition at 9.6 GPa was found to have about 9% volume change. It was consistent with an anomaly in the pressure generating curves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 20 (1993), S. 147-158 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Transmission electron microscopy on natural calcium metatitanate perovskite (dysanalyte) reveals the following twin laws in the orthorhombic (space group Pbnm) phase: reflection twins on the {110} and {112} planes, and 90° rotation twins about the [001] axis (referred to as [001]90° twin). Single crystals that were heattreated and quenched from above 1585 K exhibit a dramatic change in domain structure compared with the starting material and specimens quenched from T 〈 1470 K. Mutually perpendicular {110} and [001]90° twins are observed throughout the crystal, forming a cross-hatched domain texture. 1/2[001] antiphase domains, which are very rarely observed in the starting material, also become dominant in the crystal. This change in domain structure is interpreted as due to a structural phase transition in perovskite at a temperature below 1585 K. From the point symmetry elements that describe the twin laws and the translational elements that relate the antiphase domains, the most likely phase near 1585 K is tetragonal with space group P4/mbm. These results are consistent with high-temperature powder X-ray diffraction study. On the other hand, density of the {112} twins is increased significantly in the crystal quenched from 1673 K. Twin domains are either bound by mutually perpendicular {110} and (001) walls, or by {112} walls with {110} twin domains within the polygonal {112} domains. Both twin density variation and domain morphology suggest that the crystal may be cubic at this temperature. Microstructure of a single crystal deformed at 1273 K and 3.5 GPa (within the orthorhombic stability field) is morphologically quite distinct from that of the heat-treated specimens. Dislocations dominate the microstructure and often interact with twin domain boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 15 (1988), S. 493-497 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The deviatoric stress produced in a large-volume, high-pressure apparatus of the girdle-anvil type has been estimated from the density of free dislocations induced in natural olivine single crystals (initial density of 2×106 cm−2). Experiments at maximum pressure P=40 kbar and temperature T=1050°C for t=1 h in NaCl cell assemblies and various P-T paths yield specimens whose dislocation densities are unchanged from this initial value, implying that the deviatoric stress was less than 140 bar. In BN cell assemblies, the recovered specimen from high P-T experiments exhibit much higher densities of dislocations (∼109 cm−2) which have been produced by steady-state plastic deformation of the olivine crystals under a deviatoric stress of ∼3 kbar. This value of deviatoric stress in BN has been corroborated by observations of the subgrain size and recrystallized grain size in specimens of longer run duration (3 h).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 16 (1989), S. 630-633 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Dissociated dislocations have been observed for the first time by transmission electron microscopy in the perovskite-structure compound CaGeO3. Dislocations with Burgers vectors $$\left[ {1\bar 10} \right]$$ and [001] (in pseudo-cubic index) are dissociated into collinear partials on the (110) plane: $$\left[ {1\bar 10} \right] = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right] + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right]$$ and [001] = 1/2[001] + 1/2[001]. The partials react to form octagonal extended nodes. The stacking fault ribbons with displacement vector $$\left[ {1\bar 10} \right]$$ have a width of 350 A, which corresponds to a stacking fault energy of 35 erg/cm2 (or mJ/m2).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 20 (1994), S. 478-482 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Electronic absorption spectra have been measured at room temperature and pressure for polycrystalline samples of (Mg, Fe)SiO3 silicate perovskites synthesized by multi-anvil device. One strong near-infrared band at about 7000 cm-1 and several weak bands in the visible region were found. The near-infrared band at 7000 cm-1 is assigned to a spin-allowed transition of Fe2+ at the 8–12 coordinated site in perovskite. However, definite assignments of the weak bands in the visible region are difficult because of their low intensities and the scattering effect at the gain boundaries. Crystal field calculations for Fe2+ at different sites in perovskite have been carried out based on the crystal structure data. The results agree with the assignment of Fe2+ to the 8–12 coordinated site in perovskite. Crystal field stabilization energy of Fe2+ with coordination number of 8 in perovskite is 3332 cm-1 which is small compared to the octahedral site of magnesiowüstite (4320 cm-1), another important lower-mantle mineral.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 177 (2015): 1-8, doi:10.1016/j.marchem.2015.04.005.
    Description: The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, and OCE-1243377. Financial support was also provided by the UK Natural Environment Research Council, the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1738-1758, doi:10.1029/2018GB005994.
    Description: Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.
    Description: This study grew out of a synthesis workshop at the Lamont‐Doherty Earth Observatory of Columbia University in August 2016. This workshop was sponsored by the U.S. GEOTRACES Project Office (NSF 1536294) and the Ocean Carbon and Biogeochemistry (OCP) Project Office (NSF 1558412 and NASA NNX17AB17G). The U.S. National Science Foundation supported all of the analytical work on GA03. Kuanbo Zhou measured 228Th in the large size class particles (NSF 0925158 to WHOI). NSF 1061128 to Stony Brook University supported the BaRFlux project, for which Chistina Heilbrun is acknowledged for laboratory and field work. The lead author acknowledges support from a start‐up grant from the University of Southern Mississippi. Two anonymous reviewers are thanked for their constructive comments. All GEOTRACES GA03 data used in this study are accessible through the Biological and Chemical Oceanography Data Management Office (http://data.bco‐dmo.org/jg/dir/BCO/GEOTRACES/NorthAtlanticTransect/), and derived parameters are reported in the supporting information.
    Description: 2019-05-22
    Keywords: Biological carbon pump ; Trace metals ; North Atlantic ; Export ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-01
    Print ISSN: 0925-8388
    Electronic ISSN: 1873-4669
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...