ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-26
    Description: The molecular control of self-renewal and differentiation of stem cells has remained enigmatic. Transgenic loss-of-function and overexpression models now show that the dosage of glial cell line-derived neurotrophic factor (GDNF), produced by Sertoli cells, regulates cell fate decisions of undifferentiated spermatogonial cells that include the stem cells for spermatogenesis. Gene-targeted mice with one GDNF-null allele show depletion of stem cell reserves, whereas mice overexpressing GDNF show accumulation of undifferentiated spermatogonia. They are unable to respond properly to differentiation signals and undergo apoptosis upon retinoic acid treatment. Nonmetastatic testicular tumors are regularly formed in older GDNF-overexpressing mice. Thus, GDNF contributes to paracrine regulation of spermatogonial self-renewal and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, X -- Lindahl, M -- Hyvonen, M E -- Parvinen, M -- de Rooij, D G -- Hess, M W -- Raatikainen-Ahokas, A -- Sainio, K -- Rauvala, H -- Lakso, M -- Pichel, J G -- Westphal, H -- Saarma, M -- Sariola, H -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1489-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Programs of Developmental Biology, Molecular Neurobiology, Electron Microscopy Unit, Institute of Biotechnology, Viikki Biocenter, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688798" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Cell Cycle ; Cell Differentiation/drug effects ; Cobalt/metabolism ; *Drosophila Proteins ; Female ; Gene Expression ; Gene Targeting ; Glial Cell Line-Derived Neurotrophic Factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors ; Male ; Mice ; Mice, Transgenic ; Mitosis ; *Nerve Growth Factors ; Nerve Tissue Proteins/genetics/*physiology ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-ret ; Receptor Protein-Tyrosine Kinases/genetics/metabolism ; Sertoli Cells/cytology/physiology ; *Spermatogenesis ; Spermatogonia/*cytology/drug effects ; Stem Cells/*cytology ; Testicular Neoplasms/pathology ; Testis/anatomy & histology ; Vitamin A/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-18
    Description: Cell divisions that produce progeny differing in their patterns of gene expression are key to the development of multicellular organisms. In the budding yeast Saccharomyces cerevisiae, mother cells but not daughter cells can switch mating type because they selectively express the HO endonuclease gene. This asymmetry is due to the preferential accumulation of an unstable transcriptional repressor protein, Ash1p, in daughter cell nuclei. Here it is shown that ASH1 messenger RNA (mRNA) preferentially accumulates in daughter cells by a process that is dependent on actin and myosin. A cis-acting element in the 3'-untranslated region of ASH1 mRNA is sufficient to localize a chimeric RNA to daughter cells. These results suggest that localization of mRNA may have been an early property of the eukaryotic lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, R M -- Singer, R H -- Meng, X -- Gonzalez, I -- Nasmyth, K -- Jansen, R P -- 7 F32 HD08088-02/HD/NICHD NIH HHS/ -- GM54887/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 18;277(5324):383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9219698" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics/*physiology ; Cell Cycle ; Cell Nucleus/metabolism ; *DNA-Binding Proteins ; Deoxyribonucleases, Type II Site-Specific/genetics ; Fungal Proteins/genetics ; Genes, Fungal ; Genes, Mating Type, Fungal ; In Situ Hybridization, Fluorescence ; Microtubules/physiology ; Mutation ; *Myosin Heavy Chains ; *Myosin Type V ; Myosins/genetics ; RNA, Fungal/genetics/*metabolism ; RNA, Messenger/genetics/*metabolism ; Repressor Proteins/biosynthesis/*genetics ; Saccharomyces cerevisiae/cytology/genetics/metabolism/*physiology ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/biosynthesis/*genetics ; Transformation, Genetic ; Tropomyosin/genetics/physiology ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Baocao -- Hamer, Rowena -- Meng, Xiuxiang -- Meng, Qinghui -- Feng, Jinchao -- Xue, Dayuan -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):740. doi: 10.1126/science.338.6108.740-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23139311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/*economics ; *Endangered Species ; *Environment ; *Investments ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, Xiuxiang -- Hamer, Rowena -- Meng, Qinghui -- Wang, Peng -- Meng, Fanlu -- Li, Hongliang -- Feng, Jinchao -- Xue, Dayuan -- Zhou, Yijun -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1150-1. doi: 10.1126/science.338.6111.1150.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197515" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Experimentation/*legislation & jurisprudence ; Animal Welfare/*legislation & jurisprudence/*trends ; Animals ; China
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, Xiuxiang -- Liu, Deguang -- Feng, Jinchao -- Meng, Zhibin -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1168. doi: 10.1126/science.335.6073.1168-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403369" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild ; *Endangered Species ; *Fatty Acids, Monounsaturated/isolation & purification/therapeutic use ; *Medicine, East Asian Traditional ; *Ruminants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-12
    Description: We document that China's One-Child Policy (OCP), one of the most radical approaches to limiting population growth, has produced significantly less trusting, less trustworthy, more risk-averse, less competitive, more pessimistic, and less conscientious individuals. Our data were collected from economics experiments conducted with 421 individuals born just before and just after the OCP's introduction in 1979. Surveys to elicit personality traits were also used. We used the exogenous imposition of the OCP to identify the causal impact of being an only child, net of family background effects. The OCP thus has significant ramifications for Chinese society.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cameron, L -- Erkal, N -- Gangadharan, L -- Meng, X -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):953-7. doi: 10.1126/science.1230221. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Econometrics, Monash University, Clayton, Victoria 3800, Australia. lisa.cameron@monash.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306438" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Altruism ; Anxiety Disorders ; *Attitude ; *Behavior ; China ; Competitive Behavior ; Family ; *Family Planning Policy ; Female ; Games, Experimental ; Humans ; Male ; Only Child/*psychology ; *Personality ; Risk-Taking ; Trust ; Urban Population
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-05-30
    Description: No growth factors specific for the lymphatic vascular system have yet been described. Vascular endothelial growth factor (VEGF) regulates vascular permeability and angiogenesis, but does not promote lymphangiogenesis. Overexpression of VEGF-C, a ligand of the VEGF receptors VEGFR-3 and VEGFR-2, in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement. Thus, VEGF-C induces selective hyperplasia of the lymphatic vasculature, which is involved in the draining of interstitial fluid and in immune function, inflammation, and tumor metastasis. VEGF-C may play a role in disorders involving the lymphatic system and may be of potential use in therapeutic lymphangiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeltsch, M -- Kaipainen, A -- Joukov, V -- Meng, X -- Lakso, M -- Rauvala, H -- Swartz, M -- Fukumura, D -- Jain, R K -- Alitalo, K -- New York, N.Y. -- Science. 1997 May 30;276(5317):1423-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9162011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cloning, Molecular ; Endothelial Growth Factors/genetics/*physiology ; Endothelium, Lymphatic/physiology/ultrastructure ; Endothelium, Vascular/physiology ; Humans ; Hyperplasia ; Immunohistochemistry ; In Situ Hybridization ; Lymphatic System/*pathology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Transgenic ; Molecular Sequence Data ; RNA, Messenger/metabolism ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Growth Factor/metabolism ; Receptors, Vascular Endothelial Growth Factor ; Skin/pathology ; Vascular Endothelial Growth Factor C ; Vascular Endothelial Growth Factor Receptor-3
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-14
    Description: Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8 6 6 8 4 12 ) and six small decahedral cavities (8 2 4 8 ) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below –5834 bar at 0 K and below –3411 bar at 300 K.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-06-28
    Description: Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Andrew J -- Lo, Te-Wen -- Zeitler, Bryan -- Pickle, Catherine S -- Ralston, Edward J -- Lee, Andrew H -- Amora, Rainier -- Miller, Jeffrey C -- Leung, Elo -- Meng, Xiangdong -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Meyer, Barbara J -- GM30702/GM/NIGMS NIH HHS/ -- R01 GM030702/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):307. doi: 10.1126/science.1207773. Epub 2011 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis/*genetics ; Caenorhabditis elegans/*genetics ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Gene Targeting ; Genes, Helminth ; *Genetic Techniques ; *Genome, Helminth ; INDEL Mutation ; Mutagenesis ; Regulatory Elements, Transcriptional/*genetics ; Transcription Factors/chemistry ; Transgenes ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...