ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-28
    Description: Adeno-associated virus (AAV) vectors are currently the leading candidates for virus-based gene therapies because of their broad tissue tropism, non-pathogenic nature and low immunogenicity. They have been successfully used in clinical trials to treat hereditary diseases such as haemophilia B (ref. 2), and have been approved for treatment of lipoprotein lipase deficiency in Europe. Considerable efforts have been made to engineer AAV variants with novel and biomedically valuable cell tropisms to allow efficacious systemic administration, yet basic aspects of AAV cellular entry are still poorly understood. In particular, the protein receptor(s) required for AAV entry after cell attachment remains unknown. Here we use an unbiased genetic screen to identify proteins essential for AAV serotype 2 (AAV2) infection in a haploid human cell line. The most significantly enriched gene of the screen encodes a previously uncharacterized type I transmembrane protein, KIAA0319L (denoted hereafter as AAV receptor (AAVR)). We characterize AAVR as a protein capable of rapid endocytosis from the plasma membrane and trafficking to the trans-Golgi network. We show that AAVR directly binds to AAV2 particles, and that anti-AAVR antibodies efficiently block AAV2 infection. Moreover, genetic ablation of AAVR renders a wide range of mammalian cell types highly resistant to AAV2 infection. Notably, AAVR serves as a critical host factor for all tested AAV serotypes. The importance of AAVR for in vivo gene delivery is further highlighted by the robust resistance of Aavr(-/-) (also known as Au040320(-/-) and Kiaa0319l(-/-)) mice to AAV infection. Collectively, our data indicate that AAVR is a universal receptor involved in AAV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pillay, S -- Meyer, N L -- Puschnik, A S -- Davulcu, O -- Diep, J -- Ishikawa, Y -- Jae, L T -- Wosen, J E -- Nagamine, C M -- Chapman, M S -- Carette, J E -- DP2 AI104557/AI/NIAID NIH HHS/ -- R01 GM066875/GM/NIGMS NIH HHS/ -- U19 AI109662/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Feb 4;530(7588):108-12. doi: 10.1038/nature16465. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA. ; Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA. ; Shriners Hospital for Children, 3101 Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Department of Comparative Medicine, Stanford University School of Medicine, 287 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology ; Cell Line ; Dependovirus/classification/drug effects/*physiology ; Endocytosis/drug effects ; Female ; Gene Deletion ; Genetic Therapy/methods ; Host Specificity ; Humans ; Male ; Mice ; Parvoviridae Infections/*metabolism/*virology ; Receptors, Cell Surface/antagonists & inhibitors/deficiency/genetics/*metabolism ; Receptors, Virus/antagonists & inhibitors/deficiency/genetics/*metabolism ; *Viral Tropism/drug effects ; Virus Internalization/drug effects ; trans-Golgi Network/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-12-11
    Description: One mechanism considered responsible for the hypercalcemia that frequently accompanies malignancy is secretion by the tumor of a circulating factor that alters calcium metabolism. The structure of a tumor-secreted peptide was recently determined and found to be partially homologous to parathyroid hormone (PTH). The amino-terminal 1-34 region of the factor was synthesized and evaluated biologically. In vivo it produced hypercalcemia, acted on bone and kidney, and stimulated 1,25-dihydroxy-vitamin D3 formation. In vitro it interacted with PTH receptors and, in some systems, was more potent than PTH. These studies support a long-standing hypothesis regarding pathogenesis of malignancy-associated hypercalcemia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horiuchi, N -- Caulfield, M P -- Fisher, J E -- Goldman, M E -- McKee, R L -- Reagan, J E -- Levy, J J -- Nutt, R F -- Rodan, S B -- Schofield, T L -- AR 36446/AR/NIAMS NIH HHS/ -- AR 39191/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Dec 11;238(4833):1566-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regional Bone Center, Helen Hayes Hospital (New York State Department of Health), West Haverstraw 10993.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3685994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/blood ; Humans ; Hypercalcemia/etiology ; Neoplasms/*physiopathology ; Parathyroid Glands/physiology ; Parathyroid Hormone/pharmacology/*physiology ; Peptides/*physiology ; Rats ; Rats, Inbred Strains ; Thyroidectomy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0827
    Keywords: Vitamin D ; Chronic uremia ; Rats ; Renal responsivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Various investigators have shown that chronic uremia is associated with a normal or exaggerated phosphaturic response to parathyroid hormone (PTH). To explore the relationship between progressive uremia, renal tubular cyclic AMP (cAMP), and inorganic phosphate (Pi) response to PTH and acidosis, in vivo and in vitro experiments were designed in rats with experimental uremia of 4–6 weeks’ duration. Both uremic and pair-fed control rats were treated with 1,25-dihydroxycholecalciferol (1,25(OH)2D3) and/or chronic NH4Cl feeding. Urinary Pi and cAMP and plasma immunoreactive PTH (iPTH) were measured as well as PTH- and NaF-stimulated cAMP from isolated renal tubules. Excretion of cAMP decreased by 30% in uremic as compared to control rats despite a 3-fold rise in Pi excretion. Acidosis superimposed on uremia did not further decrease cAMP excretion, nor did it significantly alter the elevated Pi excretion. 1,25(OH)2D3 treatment of uremic rats further lowered cAMP excretion although Pi excretion rose, hypercalcemia occurred, and plasma iPTH fell. In nonuremic control rats, 1,25(OH)2D3 treatment led to hypercalcemia, a progressive decrease in cAMP, and increase in Pi excretion. Isolated renal tubules from uremic or acidotic uremic rats revealed a 50% reduction in both PTH- and NaF-stimulated cAMP generation compared to control rat renal tubules. This observation was unchanged by 1,25(OH)2D3 treatment. Renal tubules of 1,25(OH)2D3-treated control rats demonstrated a decreased cAMP production in response to both PTH and NaF which was inversely related to the calcium content of the renal tubules. Renal tubular calcium levels of uremic rats, initially 3-fold elevated, also increased during 1,25(OH)2D3 treatment. These results are consistent with the hypothesis that progressive uremia results in a dissociation between PTH, urinary cAMP, and Pi excretion which cannot be explained by either metabolic acidosis or 1,25(OH)2D3 deficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-09-18
    Description: The bacterial pathogen Yersinia uses a type III secretion system to inject several virulence factors into target cells. One of the Yersinia virulence factors, YopJ, was shown to bind directly to the superfamily of MAPK (mitogen-activated protein kinase) kinases (MKKs) blocking both phosphorylation and subsequent activation of the MKKs. These results explain the diverse activities of YopJ in inhibiting the extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38, and nuclear factor kappa B signaling pathways, preventing cytokine synthesis and promoting apoptosis. YopJ-related proteins that are found in a number of bacterial pathogens of animals and plants may function to block MKKs so that host signaling responses can be modulated upon infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orth, K -- Palmer, L E -- Bao, Z Q -- Stewart, S -- Rudolph, A E -- Bliska, J B -- Dixon, J E -- 18024/PHS HHS/ -- AI35175/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1920-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489373" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Calcium-Calmodulin-Dependent Protein Kinases/*antagonists & inhibitors ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/*pharmacology ; HeLa Cells ; Humans ; *MAP Kinase Kinase Kinase 1 ; NF-kappa B/metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Transfection ; Virulence ; Yersinia pseudotuberculosis/genetics/metabolism/pathogenicity/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: Many bacterial pathogens encode a multisubunit toxin, termed cytolethal distending toxin (CDT), that induces cell cycle arrest, cytoplasm distention, and, eventually, chromatin fragmentation and cell death. In one such pathogen, Campylobacter jejuni, one of the subunits of this toxin, CdtB, was shown to exhibit features of type I deoxyribonucleases. Transient expression of this subunit in cultured cells caused marked chromatin disruption. Microinjection of low amounts of CdtB induced cytoplasmic distention and cell cycle arrest. CdtB mutants with substitutions in residues equivalent to those required for catalysis or magnesium binding in type I deoxyribonucleases did not cause chromatin disruption. CDT holotoxin containing these mutant forms of CdtB did not induce morphological changes or cell cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lara-Tejero, M -- Galan, J E -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030657" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; COS Cells ; *Campylobacter jejuni/genetics/pathogenicity ; Cell Death ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/ultrastructure ; DNA/*metabolism ; *DNA Damage ; Deoxyribonuclease I/chemistry/*metabolism ; *G2 Phase ; Microinjections ; Molecular Sequence Data ; Mutation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-11-25
    Description: Homologs of the Yersinia virulence effector YopJ are found in both plant and animal bacterial pathogens, as well as plant symbionts. These YopJ family members were shown to act as cysteine proteases. The catalytic triad of the protease was required for inhibition of the mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB) signaling in animal cells and for induction of localized cell death in plants. The substrates for YopJ were shown to be highly conserved ubiquitin-like molecules, which are covalently added to numerous regulatory proteins. YopJ family members exert their pathogenic effect on cells by disrupting this posttranslational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orth, K -- Xu, Z -- Mudgett, M B -- Bao, Z Q -- Palmer, L E -- Bliska, J B -- Mangel, W F -- Staskawicz, B -- Dixon, J E -- 18024/PHS HHS/ -- AI41599/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1594-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Catalysis ; Catalytic Domain ; Cell Line ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Plant Leaves/cytology/virology ; SUMO-1 Protein ; Sequence Alignment ; Signal Transduction ; Transfection ; Ubiquitins/metabolism ; Virulence ; Xanthomonas campestris/enzymology/pathogenicity ; Yersinia pseudotuberculosis/enzymology/metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-02-05
    Description: A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, V M -- Wang, X -- Wardwell, S -- Courage, N L -- Volchuk, A -- Keenan, T -- Holt, D A -- Gilman, M -- Orci, L -- Cerasoli, F Jr -- Rothman, J E -- Clackson, T -- New York, N.Y. -- Science. 2000 Feb 4;287(5454):826-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ARIAD Gene Therapeutics, 26 Landsdowne Street, Cambridge, MA 02139, USA. vrivera@ariad.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10657290" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Cell Line ; Diabetes Mellitus, Experimental/drug therapy/metabolism ; Drug Delivery Systems ; Endoplasmic Reticulum/*metabolism/secretion ; Furin ; Genetic Therapy ; Golgi Apparatus/metabolism ; Human Growth Hormone/chemistry/metabolism/secretion ; Humans ; Immunophilins/chemistry/genetics/metabolism ; Insulin/secretion ; Kinetics ; Ligands ; Mice ; Proinsulin/chemistry/metabolism ; Protein Engineering ; Recombinant Fusion Proteins/*chemistry/*metabolism/secretion ; Subtilisins/metabolism ; Tacrolimus Binding Proteins ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-03-07
    Description: STATs (signal transducers and activators of transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. The crystal structure of an NH2-terminal conserved domain (N-domain) comprising the first 123 residues of STAT-4 was determined at 1.45 angstroms. The domain consists of eight helices that are assembled into a hook-like structure. The N-domain has been implicated in several protein-protein interactions affecting transcription, and it enables dimerized STAT molecules to polymerize and to bind DNA cooperatively. The structure shows that N-domains can interact through an extensive interface formed by polar interactions across one face of the hook. Mutagenesis of an invariant tryptophan residue at the heart of this interface abolished cooperative DNA binding by the full-length protein in vitro and reduced the transcriptional response after cytokine stimulation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinkemeier, U -- Moarefi, I -- Darnell, J E Jr -- Kuriyan, J -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1048-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology and Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461439" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Interferon-gamma/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; *Protein Conformation ; Protein Structure, Tertiary ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Signal Transduction ; Trans-Activators/*chemistry/genetics/metabolism ; Transcription, Genetic ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-12-04
    Description: The M-current regulates the subthreshold electrical excitability of many neurons, determining their firing properties and responsiveness to synaptic input. To date, however, the genes that encode subunits of this important channel have not been identified. The biophysical properties, sensitivity to pharmacological blockade, and expression pattern of the KCNQ2 and KCNQ3 potassium channels were determined. It is concluded that both these subunits contribute to the native M-current.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H S -- Pan, Z -- Shi, W -- Brown, B S -- Wymore, R S -- Cohen, I S -- Dixon, J E -- McKinnon, D -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1890-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Cardiology, Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836639" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Anthracenes/pharmacology ; Brain/metabolism ; Ganglia, Sympathetic/metabolism ; Gene Expression ; Humans ; Indoles/pharmacology ; KCNQ2 Potassium Channel ; KCNQ3 Potassium Channel ; Kinetics ; Neurons/drug effects/physiology ; Oocytes ; Patch-Clamp Techniques ; Potassium/*metabolism ; Potassium Channels/chemistry/drug effects/genetics/*metabolism ; Potassium Channels, Voltage-Gated ; Pyridines/pharmacology ; Rats ; Sympathetic Nervous System/drug effects/physiology ; Tetraethylammonium/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-05-13
    Description: Mitotic spindle disassembly requires major structural alterations in the associated cytoskeletal proteins and mitosis is known to be associated with Ca2+-sequestering phenomena and calcium transients. To examine the possible involvement of a ubiquitous Ca2+-activated protease, calpain II, in the mitotic process, synchronized PtK1 cells were monitored by immunofluorescence for the relocation of calpain II. The plasma membrane was the predominant location of calpain II in interphase. However, as mitosis progressed, calpain II relocated to (i) an association with mitotic chromosomes, (ii) a perinuclear location in anaphase, and (iii) a mid-body location in telophase. Microinjection of calpain II near the nucleus of a PtK1 cell promoted the onset of metaphase. Injection of calpain II at late metaphase promoted a precocious disassembly of the mitotic spindle and the onset of anaphase. These data suggest that calpain II is involved in mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schollmeyer, J E -- New York, N.Y. -- Science. 1988 May 13;240(4854):911-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture, Roman L. Hruska Meat Animal Research Center, Clay Center, NE 68933.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2834825" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase/drug effects ; Animals ; Calcium/pharmacology ; Calcium-Binding Proteins/pharmacology ; Calpain/antagonists & inhibitors/pharmacology/*physiology ; Cell Line ; Cell Membrane/enzymology ; Cell Nucleus/enzymology ; Chromosomes/metabolism ; Enzyme Activation ; Fluorescent Antibody Technique ; Fluorescent Dyes ; Interphase ; Metaphase/drug effects ; *Mitosis ; Muscles/enzymology ; Rhodamines ; Spindle Apparatus/drug effects ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...