ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Genome  (3)
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Geophysical Union
  • American Physical Society (APS)
  • Annual Reviews
  • 1
    Publication Date: 2007-04-14
    Description: The completion of the draft sequence of the rhesus macaque genome allowed us to study the genomic composition and evolution of transposable elements in this representative of the Old World monkey lineage, a group of diverse primates closely related to humans. The L1 family of long interspersed elements appears to have evolved as a single lineage, and Alu elements have evolved into four currently active lineages. We also found evidence of elevated horizontal transmissions of retroviruses and the absence of DNA transposon activity in the Old World monkey lineage. In addition, approximately 100 precursors of composite SVA (short interspersed element, variable number of tandem repeat, and Alu) elements were identified, with the majority being shared by the common ancestor of humans and rhesus macaques. Mobile elements compose roughly 50% of primate genomes, and our findings illustrate their diversity and strong influence on genome evolution between closely related species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Kyudong -- Konkel, Miriam K -- Xing, Jinchuan -- Wang, Hui -- Lee, Jungnam -- Meyer, Thomas J -- Huang, Charles T -- Sandifer, Erin -- Hebert, Kristi -- Barnes, Erin W -- Hubley, Robert -- Miller, Webb -- Smit, Arian F A -- Ullmer, Brygg -- Batzer, Mark A -- GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):238-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Multi-Scale Systems, Louisiana State University, Baton Rouge, LA 70803, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecidae/*genetics ; *DNA Transposable Elements ; Endogenous Retroviruses/genetics ; Evolution, Molecular ; Gene Transfer, Horizontal ; Genome ; Genome, Human ; Humans ; Macaca mulatta/*genetics ; Repetitive Sequences, Nucleic Acid ; Retroelements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-12-22
    Description: We sequenced 28 million base pairs of DNA in a metagenomics approach, using a woolly mammoth (Mammuthus primigenius) sample from Siberia. As a result of exceptional sample preservation and the use of a recently developed emulsion polymerase chain reaction and pyrosequencing technique, 13 million base pairs (45.4%) of the sequencing reads were identified as mammoth DNA. Sequence identity between our data and African elephant (Loxodonta africana) was 98.55%, consistent with a paleontologically based divergence date of 5 to 6 million years. The sample includes a surprisingly small diversity of environmental DNAs. The high percentage of endogenous DNA recoverable from this single mammoth would allow for completion of its genome, unleashing the field of paleogenomics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poinar, Hendrik N -- Schwarz, Carsten -- Qi, Ji -- Shapiro, Beth -- Macphee, Ross D E -- Buigues, Bernard -- Tikhonov, Alexei -- Huson, Daniel H -- Tomsho, Lynn P -- Auch, Alexander -- Rampp, Markus -- Miller, Webb -- Schuster, Stephan C -- HG02238/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):392-4. Epub 2005 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McMaster Ancient DNA Center, McMaster University, 1280 Main Street West, Hamilton ON, L8S 4L9 Canada. poinarh@mcmaster.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16368896" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Computational Biology ; Cytochromes b/genetics ; DNA, Mitochondrial/genetics ; Dogs/genetics ; Elephants/*genetics ; *Fossils ; Gene Library ; Genome ; *Genomics ; Humans ; Mandible/*chemistry ; *Paleontology ; Polymerase Chain Reaction ; Sequence Alignment ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Siberia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-11-03
    Description: A full understanding of primate morphological and genomic evolution requires the identification of their closest living relative. In order to resolve the ancestral relationships among primates and their closest relatives, we searched multispecies genome alignments for phylogenetically informative rare genomic changes within the superordinal group Euarchonta, which includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews). We also constructed phylogenetic trees from 14 kilobases of nuclear genes for representatives from most major primate lineages, both extant colugos, and multiple treeshrews, including the pentail treeshrew, Ptilocercus lowii, the only living member of the family Ptilocercidae. A relaxed molecular clock analysis including Ptilocercus suggests that treeshrews arose approximately 63 million years ago. Our data show that colugos are the closest living relatives of primates and indicate that their divergence occurred in the Cretaceous.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janecka, Jan E -- Miller, Webb -- Pringle, Thomas H -- Wiens, Frank -- Zitzmann, Annette -- Helgen, Kristofer M -- Springer, Mark S -- Murphy, William J -- HG02238/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dna ; Evolution, Molecular ; Fossils ; Genome ; Humans ; Mammals/classification/genetics ; Molecular Sequence Data ; Phylogeny ; Primates/classification/*genetics ; Scandentia/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...