ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • pearl millet  (4)
  • Blue-green algae  (3)
  • Pigeonpea  (3)
  • 81.10  (2)
  • Springer  (12)
  • 1990-1994  (12)
  • 1970-1974
  • 1965-1969
Collection
Keywords
Publisher
  • Springer  (12)
Years
Year
  • 1
    ISSN: 1573-5087
    Keywords: coleoptile length ; dwarf mutants ; gibberellin levels ; gibberellin sensitivity ; pearl millet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The concentrations of endogenous gibberellins (GAs) were determined by combined gas chromatography-mass spectrometry in shoots of five non-allelic dwarfs of pearl millet Pennisetum glaucum (L.) R. Br. One mutant (d3), with an extreme dwarf phenotype, was found to be deficient in all GAs measured; the others (d1, d2, d4 and the quantitatively inherited dwarf) had similar levels of GAs to the tall genotype. Only the GA-deficient dwarf recovered the tall phenotype in response to applying GA3 up to the adult stage, while the others showed slight to moderate responses at the seedling stage, depending on the season, and no response at later stages. The d1, d3 and d4 dwarfs had short coleoptiles. A wide range of coleoptile lengths with a normal distribution pattern was observed in the tall, d2 and the quantitatively inherited dwarf, suggesting that there is polygenic control of this trait.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 9 (1990), S. 239-244 
    ISSN: 1432-0789
    Keywords: Cyanobacteria ; Blue-green algae ; Soil inoculation ; Microbial biomass ; Enzyme activities ; Soil nitrogen ; Soil aggregation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of surface growth of inoculated cyanobacteria (blue-green algae) on subsurface properties of a brown earth, silt loam soil was studied in reconstituted flooded soil columns. One blue-green algae species, Nostoc muscorum, become dominant within the first 7 days of inoculation. In light control columns (not inoculated) a bryophyte, Barbula recurvirostra, was dominant although significant growth of indigenous blue-green algae occurred. The blue-green algae counts were in the range of 1×106 g-1 dry soil in the surface layer (0–0.7 cm) in both columns. Any effect of surface phototrophic growth on soil properties was restricted to the surface layer. In inoculated columns there was a twofold increase in microbial biomass and an eightfold increase in bacterial numbers by week 13. However, bacterial numbers declined so that there was only a 2.8-fold increase by week 21. Dehydrogenase (x2.1), urease (x2.8) and phosphatase (x3.1) activities and polysaccharides (+69%) increased by week 21 as a result of the blue-green algae inoculation along with a significant improvement in soil aggregation. However, similar increases occurred in the light control columns, indicating that given appropriate conditions of light and moisture indigenous species may be ultimately as effective as introduced species in bringing about biochemical and microbiological changes to soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Cajanus cajan ; Pigeonpea ; Rhizobium variation ; Salinity stress ; Symbiotic nitrogen fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary There were significant differences among pigeonpea [Cajanus cajan (L.) Millsp] Rhizobium sp. strains (IC 3506, IC 3484, IC 3195, and IC 3087) in their ability to nodulate and fix N2 under saline conditions. Pigeonpea plants inoculated with IC 3087 and IC 3506 were less affected in growth by salinity levels of 6 and 8 dS m-1 than plants inoculated with the other strains. For IC 3506, IC 3484, and IC 3195, there was a decrease in the number of nodules with increasing salinity, while the average nodule dry weight and the specific nitrogenase activity remained unaffected. However, in IC 3087, the number of nodules increased slightly with increasing salinity. Leaf-P concentrations increased with salinity in the inoculated plants irrespective of the Rhizobium sp. strain, and leaf-N concentrations decreased with increasing salinity in IC 3484 and IC 3195 only. Shoot-Na and-Cl levels were further increased in these salt-sensitive strains only at 8 dS m-1. Therefore there may be scope for selecting pigeonpea Rhizobium sp. symbioses better adapted to saline conditions. The Rhizobium sp. strains best able to form effective symbioses at high salinity levels are not necessarily derived from saline soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 54 (1992), S. 284-287 
    ISSN: 1432-0630
    Keywords: 81.10 ; 81.15 ; 68.55
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract For the first time insulating epitaxial SrF2 films on (100) GaAs substrates have been grown by thermal deposition followed by in situ annealing process. Structural properties of SrF2 films examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicate a very good crystalline quality. It is observed from the X-ray analysis that SrF2 layers thinner than 100 nm suffer two dimensional compressive stress due to the lattice misfit while those thicker than 100 nm suffer two dimensional tensile stress due to the difference in the thermal expansion coefficients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 56 (1993), S. 353-354 
    ISSN: 1432-0630
    Keywords: 73.40 ; 81.10 ; 81.15
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Incorporation of a thin insulating layer of polymer-like polyimide deposited by pulsed laser evaporation technique between metal and n-GaAs has resulted in diode structures with MIS and Schottky-barrier-type capacitance-voltage and current-voltage characteristics. These structures have the potential to be useful in improving the performance of GaAs FETs for microwave and high-speed applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Atylosia platycarpa ; Cajanus cajan ; Pigeonpea ; N2 fixation ; Rhizobium ; Salinity stress ; Acetylene reduction assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Once symbiosis between the pigeonpea cultivar ICPL 227 and the Rhizobium sp. strain IC 3024 is established, it is efficient in fixing N2 under saline conditions and can support growth comparable to N-fed plants in growth media with up to 6 dS m-1 salinity. However, the early stages of establishment of the pigeonpea-IC 3024 symbiotic system have proved sensitive to salinity. The present study showed that the number of nodules was markedly reduced at 8 dS m-1 salinity; however, nodule development and functioning were not affected by salinity in the pigeonpea-IC 3024 symbiosis. The symbiotic system of Atylosia platycarpa and Rhizobium sp. strain IC 3087 was established successfully even at 12 dS m-1 and supported growth comparable to that of N-fed plants. P levels in leaves were increased under saline conditions in N-fed and N2-fixing pigeonpea and A. platycarpa. There were no consistent differences in the leaf Na and chloride levels between N-fed and N2-fixing plants of pigeonpea and A. platycarpa. The present study suggests that the rhizobial symbiosis may not be a necessary factor for initial screening of pigeonpea and related wild species for salinity tolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 10 (1990), S. 61-64 
    ISSN: 1432-0789
    Keywords: Blue-green algae ; N2 fixation ; Oil-seed rape ; Organic matter ; Productivity ; Wetland rice soil ; Nostoc muscorum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Blue-green algal (Nostoc muscorum) or bryophyte (Barbula recurvirostra) growth on the surface of a brown earth silt loam contained in flooded columns significantly increased soil C (+20.9% and ±23.0%, respectively) and soil N (+25.1% and +9.6%, respectively) after 5 weeks in the surface 0.7-cm soil layer. Differences in the lower layers were not significant since there was no movement of C or N metabolites down the profile, even after 21 weeks. The input of C by the inoculated blue-green algae was estimated at 0.48 Mg C 100-1 g soil or 0.45g C ha-1; the bryophyte growth gave 0.5 Mg C ha-1. N fixation by the blue-green algae alone was estimated at 60 kg N ha-1 after 5 weeks of growth. Blue-green algae associated with bryophyte growth had fixed 23 kg N ha-1 after 5 weeks, rising to 40 kg ha-1 after 21 weeks. Decomposition of the bryophyte biomass led to a significant increase in the dry weight (+16.8%) and the N uptake (+27.5%) of spring oil-seed rape planted in homogenised soil. In contrast, soil incorporation of the blue-green algal biomass had no significant effect on yield. The equivalent mineralized N from the blue-green algal and bryophyte incorporation was estimated as 24 and 58 kg N ha-1, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 306-312 
    ISSN: 1432-0789
    Keywords: Alkali soil ; Blue-green algae ; Calcium carbonate ; Gypsum ; Nitrogen fixation ; Organic matter ; Soil reclamation ; Sodic soil ; Waterlogged soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Virgin alkali (sodic) soils have a high pH and high exchangeable Na and are often barren. Blue-green algae, however, tolerate excess Na and grow extensively on the soil surface in wet seasons. Experiments using a highly degraded alkali soil (silt loam, pH 10.3, electrical conductivity 3.5 dS m-1, 90% exchangeable Na) were conducted in soil columns, with or without gypsum, in order to study the influence of waterlogging on the growth of indigenous and inoculated blue-green algae and hence, soil reclamation. The growth of indigenous blue-green algae was initially slow in alkali soil, due to the high pH and exchangeable Na, and depressed in gypsum-amended soil, due to excess Ca. Inoculation hastened the establishment of blue-green algae in both the unamended alkali soil and the gypsum-amended soil, overcoming the adverse influence of excess Na in the former and excess Ca in the latter. Gypsum was effective in amelioration (pH 9.05, electrical conductivity 1.2 dS m-1, 41% exchangeable Na after 11 weeks) but blue-green algae were ineffective even after 17 weeks. In combination with gypsum, blue-green algae had no additional effect, and the C and N increases due to the growth of indigenous or inoculated blue-green algae were insignificant. Alkali soil reclamation by biological methods requires mobilization of Ca from native soil calcite and the exchange of Ca for Na in the exchange complex. The ineffectiveness of blue-green algae was ascribed to their inability to mobilize Ca. It is argued that current theories favouring blue-green algae as a biological amendment to bring about alkali soil reclamation are untenable and are not comparable with an effective chemical amendment such as gypsum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0789
    Keywords: Fertilizer use efficiency ; Intercropping ; Natural 15N abundance ; Nitrogen fixation ; Pigeonpea ; Sorghum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment was conducted to obtain the N balance sheet for sole crops and intercrops of sorghum [Sorghum bicolor (L.) Moench] and pigeonpeas [Cajanus cajan (L.) Millsp.]. Intercropping gave a significant advantage over sole cropping in terms of dry matter production and grain yield, as calculated on the basis of the land equivalent ratio and area-time equivalent ratio. The N fertilizer use efficiency and atmospheric N2 fixation by pigeonpea were estimated using 15N-labeling and natural abundance methods. The N fertilizer use efficiency of sorghum was unaltered by the cropping system, while that of the pigeonpea was greatly reduced by intercropping. Although intercropping increased the fractional contribution of fixed N to the pigeonpeas, no significant difference was observed between the cropping systems in total symbiotically fixed N. There was no evidence of a significant transfer of N from the pigeonpea to the sorghum. This study showed that use of soil N and fertilizer N by pigeonpeas was almost the same as that by sorghum in sole cropping, indicating the potential competence of pigeonpeas to exploit soil N. However, when N was exhausted by a companion crop in intercropping, the pigeonpea crop increased its dependency on atmospheric N2 fixation. We conclude that knowledge of how N from different sources is shared by companion crops is a prerequisite to establishing strategies to increase N use, and consequently land productivity, in intercropping systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 52 (1991), S. 25-31 
    ISSN: 1573-5060
    Keywords: Pennisetum glaucum ; pearl millet ; dwarfing gene ; near-isogenic lines ; yield and yield components
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A d2 dwarfing gene in pearl millet [Pennisetum glaucum (L.) R. Br.] is currently being extensively used for the development of hybrid parents. Its effect on grain yield and yield components is poorly understood. Twelve pairs of tall and dwarf near-isogenic lines developed in the diverse genetic background of three composites were evaluated for grain yield and yield components for 2 years at two locations in southern India. The d2 gene or the genes linked to it, on an average, reduced plant height by 42%, grain yield by 14%, and head girth by 8% but increased head length and number of tillers per plant by about 5–6%. Large variations were observed among pairs (genetic background) for the difference between tall and dwarf near-isogenic lines for all of the above yield components resulting in no significant difference in five pairs and 17–35% less yield in dwarfs as compared to their tall counterparts in six pairs. Days to 50% flowering and seed weight were least affected by the d2 gene with the average difference between tall and dwarf groups of near-isogenic lines being of the order of 1–2%. These results indicate that the advantageous effects of d2 dwarfing gene can be effectively exploited by manipulating the genetic background. The difference between the average grain yields of tall and dwarf groups of near-isogenic lines showed considerable variation across environments with the dwarfs yielding as much as tall group in one environment and up to 30% less than the tall group in the other, thus, indicating that the d2 gene effect may be substantially modified by the environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...