ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 263 (1991), S. 325-336 
    ISSN: 1432-0878
    Keywords: Cementum ; Fiber fringe ; Periodontal ligament fibers ; Dentino-cemental junction ; Electron microscopy ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present study describes for the first time the development of early acellular extrinsic fiber cementum (AEFC) until its establishment on human teeth. Precisely selected premolars with roots developed to 50%–100% of their final length were prefixed in Karnovsky's fixative and most of them were decalcified in EDTA. Their roots were subdivided into about 10 blocks each, cut from the mesial and distal root surfaces. Following osmication, these blocks were embedded in Epon and sectioned for light-and transmission electron microscopy. Some blocks were cut non-demineralized. From semithin stained sections, the density of the collagenous fiber fringe protruding from the root surface was measured by using the Videoplan-system. After initiation of this fiber fringe and its attachment to the dentinal root surface followed by mineralization, the fringe gradually increased in length and subsequently became mineralized. Fringe elongation and the advancement of the mineralization front appeared to progress proportionally. Thus, in all stages of AEFC development, a short fiber fringe covered the mineralized AEFC. Its density remained constant, irrespective of AEFC thickness. The latter gradually increased and reached an early maximum of 15–20 μm in the cervical region. At this stage, the AEFC fringe appeared to fuse with the future dentogingival or other collagen fibers of the tooth supporting apparatus. Mineralization of the fringe commenced with isolated, spherical or globular centers, which later fused with the mineralization front and became incorporated in AEFC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 274 (1993), S. 343-352 
    ISSN: 1432-0878
    Keywords: Teeth ; Cementum ; Autoradiography ; Cementoblasts ; Fibroblasts ; Matrix production ; In vitro analysis ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The present study describes the dynamic process of both acellular extrinsic (AEFC) and acellular/cellular intrinsic fiber cementum (AIFC/CIFC) matrix production on growing human teeth. Selected erupting maxillary and mandibular premolars with roots grown to about 70%–95% of their final length were placed in organ culture immediately following extraction. Twelve teeth for short-time labeling were pulse-incubated for 15 min in medium containing 3H-proline and chased for various times in order to follow the migration and secretion of the tracer. Eight teeth for long-time incubation were labeled continuously for 5 h before being chased for 1–8 days in order to label cementum matrix accumulation. After decalcification in ethylene diaminetetraacetic acid (EDTA), their roots were subdivided into about 20 slices each. Epon-embedded sections were prepared for light- and electron-microsopic as well as autoradiographic examination. During CIFC-formation, cementoblasts revealed high intracytoplasmic silver grain concentrations within the first hour after 3H-proline administration. The release of the tracer occurred between 60 to 120 min after administration. After 2 h, cementoblasts and the cementum matrix appeared to be labeled about equally. After 5 h, most of the labeled proteins appeared to be localized in the cementoid. Silver grains increased in number over the cementum matrix from 5–24 h. Very high intracellular grain concentrations within very large cementoblasts corresponded to regions of rapid cementum formation. Tracer-halos around entrapped cells lend support to a multipolar mode of matrix production during CIFC-initiation. The fate of the tracer during the development of early AEFC-matrix was less clear. However, fibroblasts revealed dense intracytoplasmic grain accumulations within the first hour after 3H-proline administration. Thereafter, the tracer localization was vague. This indistinct grain localization reflected the particular mode of AEFC-matrix production characterized by addition of new fibril segments to pre-existing fibers of a collagenous fringe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Periodontal ligament cells ; Alveolar bone cells ; Cementum ; Cell culture ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A diseased and mechanically treated surface of root cementum is known, clinically, to favor periodontal regeneration. The present investigation was undertaken to test whether previously diseased and experimentally treated root surfaces can support the in-vitro formation of a new collagenous matrix. Three teeth extracted for advanced periodontitis were treated first with 5% sodium hypochlorite for 2 h to remove all organic material from the root surface. After the healthy, apical one third of the root was cut off, the roots were scaled with moderate pressure to remove visible calculus. Non-demineralized root discs were cut and placed on a co-culture of periodontal ligament- and alveolar bone-derived cells. After 7 weeks in culture, either one of two matrix types was found along the root surface. The most frequent matrix consisted of clusters of cells layered within densely aggregated collagen fibrils. The other, less frequent matrix consisted of loosely arranged collagen fibrils adjacent to the cemental surface. The findings support the notion that, in vitro, a collagenous matrix is formed in contact to diseased and experimentally treated root surfaces. However, the smooth, non-demineralized and scaled cemental surface does not appear to be a suitable substrate for interdigitation with newly produced collagen fibrils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 267 (1992), S. 321-335 
    ISSN: 1432-0878
    Keywords: Teeth ; Cementum ; Cementoblasts ; Matrix production ; Electron microscopy ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present study describes the formative process of the initiation of cellular intrinsic fiber cementum (CIFC) in still growing human teeth. From 29 premolars and molars with incomplete roots developed to 60–90% of their final length, 8 premolars (with roots formed to three quarters of their final length) were selected for electron-microscopic investigation. All teeth were clinically intact and prefixed in Karnovsky's fixative immediately after extraction. Most of them were decalcified in ethylene diaminetetraacetic acid (EDTA), and the apical part of the roots was divided axially into mesial and distal portions that were subdivided in about 5 slices each. Following osmication and embedding in Epon, these blocks were cut for light- and electron-microscopic examination. In addition, 5 teeth with incomplete roots were freed from organic material and processed for scanning electron microscopy. It was found that CIFC-initiation commenced very close to the advancing root edge and resulted in a rapid cementum thickening. Thereafter, appositional growth continued on the already established cementum surface. Large, basophilic and rough endoplasmic reticulum-rich cementoblasts, some of which became cementocytes, were responsible for both fast and slow CIFC-formation. The CIFC-matrix was free of Sharpey's fibers and composed of more or less organized intrinsic collagen fibrils, in part fibril bundles, that ran roughly parallel to the root surface. Initially, the cementum fibrils intermingled with those of the dentinal collagen fibrils, which were not yet mineralized. This boundary subsequently underwent calcification. The development of collagen fibril bundles and their extracellular arrangement were associated with cytoplasmic processes probably involved in fibril formation and fibril assembly. Many cementoblasts contained intracytoplasmic, membrane-bounded collagen fibrils, which probably were related to fibril formation rather than degradation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...