ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (26)
  • Male  (21)
  • LUNAR AND PLANETARY EXPLORATION
  • 1995-1999  (43)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 1997-06-13
    Description: Mitochondrial DNA control region sequences were analyzed from 162 wolves at 27 localities worldwide and from 140 domestic dogs representing 67 breeds. Sequences from both dogs and wolves showed considerable diversity and supported the hypothesis that wolves were the ancestors of dogs. Most dog sequences belonged to a divergent monophyletic clade sharing no sequences with wolves. The sequence divergence within this clade suggested that dogs originated more than 100,000 years before the present. Associations of dog haplotypes with other wolf lineages indicated episodes of admixture between wolves and dogs. Repeated genetic exchange between dog and wolf populations may have been an important source of variation for artificial selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vila, C -- Savolainen, P -- Maldonado, J E -- Amorim, I R -- Rice, J E -- Honeycutt, R L -- Crandall, K A -- Lundeberg, J -- Wayne, R K -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1687-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Los Angeles, CA 90095-1606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Breeding ; Carnivora/*genetics ; Crosses, Genetic ; DNA, Mitochondrial/*genetics ; Dogs/classification/*genetics ; Female ; Haplotypes ; Male ; Molecular Sequence Data ; Phylogeny ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-11-22
    Description: Despite its high prevalence, very little is known regarding genetic predisposition to prostate cancer. A genome-wide scan performed in 66 high-risk prostate cancer families has provided evidence of linkage to the long arm of chromosome 1 (1q24-25). Analysis of an additional set of 25 North American and Swedish families with markers in this region resulted in significant evidence of linkage in the combined set of 91 families. The data provide strong evidence of a major prostate cancer susceptibility locus on chromosome 1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J R -- Freije, D -- Carpten, J D -- Gronberg, H -- Xu, J -- Isaacs, S D -- Brownstein, M J -- Bova, G S -- Guo, H -- Bujnovszky, P -- Nusskern, D R -- Damber, J E -- Bergh, A -- Emanuelsson, M -- Kallioniemi, O P -- Walker-Daniels, J -- Bailey-Wilson, J E -- Beaty, T H -- Meyers, D A -- Walsh, P C -- Collins, F S -- Trent, J M -- Isaacs, W B -- CA58236/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1371-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Human Genome Research, National Institutes of Health, Bethesda, MD, USA. jtrent@nchgr.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910276" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; *Chromosome Mapping ; *Chromosomes, Human, Pair 1 ; Dinucleotide Repeats ; *Genes ; Genetic Linkage ; Genetic Markers ; Genetic Predisposition to Disease ; Humans ; Likelihood Functions ; Male ; Middle Aged ; North America ; Oncogenes ; Pedigree ; Prostatic Neoplasms/*genetics ; Risk Factors ; Statistics, Nonparametric ; Sweden
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Human reovirus requires an activated Ras signaling pathway for infection of cultured cells. To investigate whether this property can be exploited for cancer therapy, severe combined immune deficient mice bearing tumors established from v-erbB-transformed murine NIH 3T3 cells or human U87 glioblastoma cells were treated with the virus. A single intratumoral injection of virus resulted in regression of tumors in 65 to 80 percent of the mice. Treatment of immune-competent C3H mice bearing tumors established from ras-transformed C3H-10T1/2 cells also resulted in tumor regression, although a series of injections were required. These results suggest that, with further work, reovirus may have applicability in the treatment of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coffey, M C -- Strong, J E -- Forsyth, P A -- Lee, P W -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1332-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology Research Group and Department of Microbiology and Infectious Diseases, University of Calgary Health Science Centre, Calgary, Alberta, T2N 4N1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812900" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antibodies, Viral/immunology ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line, Transformed ; Genes, erbB ; *Genes, ras ; Humans ; Male ; Mammalian orthoreovirus 3/immunology/*physiology ; Mice ; Mice, Inbred C3H ; Mice, SCID ; Neoplasm Transplantation ; Neoplasms, Experimental/metabolism/pathology/*therapy/virology ; Signal Transduction ; Tumor Cells, Cultured ; Virus Replication ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-09-22
    Description: Fertilin, a member of the ADAM family, is found on the plasma membrane of mammalian sperm. Sperm from mice lacking fertilin beta were shown to be deficient in sperm-egg membrane adhesion, sperm-egg fusion, migration from the uterus into the oviduct, and binding to the egg zona pellucida. Egg activation was unaffected. The results are consistent with a direct role of fertilin in sperm-egg plasma membrane interaction. Fertilin could also have a direct role in sperm-zona binding or oviduct migration; alternatively, the effects on these functions could result from the absence of fertilin activity during spermatogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, C -- Bunch, D O -- Faure, J E -- Goulding, E H -- Eddy, E M -- Primakoff, P -- Myles, D G -- HD16580/HD/NICHD NIH HHS/ -- U54HD29125/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1857-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743500" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Animals ; Calcium/metabolism ; Cell Adhesion ; Cell Membrane/physiology ; Fallopian Tubes ; Female ; Male ; Membrane Fusion ; Membrane Glycoproteins/genetics/metabolism/*physiology ; Metalloendopeptidases/genetics/metabolism/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Ovum/physiology ; Sperm Capacitation ; *Sperm-Ovum Interactions ; Spermatogenesis ; Spermatozoa/chemistry/*physiology ; Zona Pellucida/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-10-16
    Description: The cystic fibrosis gene encodes a chloride channel, CFTR (cystic fibrosis transmembrane conductance regulator), that regulates salt and water transport across epithelial tissues. Phosphorylation of the cytoplasmic regulatory (R) domain by protein kinase A activates CFTR by an unknown mechanism. The amino-terminal cytoplasmic tail of CFTR was found to control protein kinase A-dependent channel gating through a physical interaction with the R domain. This regulatory activity mapped to a cluster of acidic residues in the NH(2)-terminal tail; mutating these residues proportionately inhibited R domain binding and CFTR channel function. CFTR activity appears to be governed by an interdomain interaction involving the amino-terminal tail, which is a potential target for physiologic and pharmacologic modulators of this ion channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naren, A P -- Cormet-Boyaka, E -- Fu, J -- Villain, M -- Blalock, J E -- Quick, M W -- Kirk, K L -- DA10509/DA/NIDA NIH HHS/ -- DK50830/DK/NIDDK NIH HHS/ -- DK51868/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521352" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; COS Cells ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cystic Fibrosis Transmembrane Conductance ; Regulator/*chemistry/genetics/*metabolism ; DNA Mutational Analysis ; Humans ; *Ion Channel Gating ; Molecular Sequence Data ; Mutation ; Oocytes ; Patch-Clamp Techniques ; Phosphorylation ; Protein Structure, Secondary ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-11-13
    Description: The p42 mitogen-activated protein kinase (MAPK) is required for progression through meiotic M phase in Xenopus oocytes. This report examines whether it also plays a role in normal mitotic progression. MAPK was transiently activated during mitosis in cycling Xenopus egg extracts after activation of the cyclin-dependent kinase Cdc2-cyclin B. Interference with MAPK activation by immunodepletion of its activator MEK, or by addition of the MEK inhibitor PD98059, caused precocious termination of mitosis and interfered with production of normal mitotic microtubules. Sustained activation of MAPK arrested extracts in mitosis in the absence of active Cdc2-cyclin B. These findings identify a role for MEK and MAPK in maintaining the mitotic state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guadagno, T M -- Ferrell, J E Jr -- GM46383/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1312-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5332, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812894" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CDC2 Protein Kinase/metabolism ; Cyclin B/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Female ; Flavonoids/pharmacology ; Interphase ; MAP Kinase Kinase 1 ; Male ; Microtubules/metabolism ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/*metabolism ; *Mitogen-Activated Protein Kinase Kinases ; *Mitosis ; Ovum/*cytology/enzymology ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Recombinant Proteins/metabolism/pharmacology ; Spermatozoa/physiology ; Spindle Apparatus/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-13
    Description: Persistent activation of p42 mitogen-activated protein kinase (p42 MAPK) during mitosis induces a "cytostatic factor" arrest, the arrest responsible for preventing the parthenogenetic activation of unfertilized eggs. The protein kinase p90 Rsk is a substrate of p42 MAPK; thus, the role of p90 Rsk in p42 MAPK-induced mitotic arrest was examined. Xenopus laevis egg extracts immunodepleted of Rsk lost their capacity to undergo mitotic arrest in response to activation of the Mos-MEK-1-p42 MAPK cascade of protein kinases. Replenishing Rsk-depleted extracts with catalytically competent Rsk protein restored the ability of the extracts to undergo mitotic arrest. Rsk appears to be essential for cytostatic factor arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatt, R R -- Ferrell, J E Jr -- GM16415/GM/NIGMS NIH HHS/ -- GM46383/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1362-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5332, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558991" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CDC2 Protein Kinase/metabolism ; Cell Extracts ; Enzyme Activation ; MAP Kinase Kinase 1 ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; *Mitosis ; Molecular Sequence Data ; Ovum/*cytology/enzymology ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins c-mos/*metabolism/pharmacology ; Ribosomal Protein S6 Kinases/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-11-05
    Description: Reactive and potentially toxic cofactors such as copper ions are imported into eukaryotic cells and incorporated into target proteins by unknown mechanisms. Atx1, a prototypical copper chaperone protein from yeast, has now been shown to act as a soluble cytoplasmic copper(I) receptor that can adopt either a two- or three-coordinate metal center in the active site. Atx1 also associated directly with the Atx1-like cytosolic domains of Ccc2, a vesicular protein defined in genetic studies as a member of the copper-trafficking pathway. The unusual structure and dynamics of Atx1 suggest a copper exchange function for this protein and related domains in the Menkes and Wilson disease proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pufahl, R A -- Singer, C P -- Peariso, K L -- Lin, S J -- Schmidt, P J -- Fahrni, C J -- Culotta, V C -- Penner-Hahn, J E -- O'Halloran, T V -- GM-38047/GM/NIGMS NIH HHS/ -- GM-50016/GM/NIGMS NIH HHS/ -- GM-54111/GM/NIGMS NIH HHS/ -- R01 GM054111/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):853-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346482" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Carrier Proteins ; *Cation Transport Proteins ; Copper/*metabolism ; Escherichia coli ; Fungal Proteins/metabolism/*physiology ; Humans ; Molecular Chaperones/*physiology ; Molecular Sequence Data ; Recombinant Proteins ; Saccharomyces cerevisiae/metabolism/*physiology ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-03-07
    Description: STATs (signal transducers and activators of transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. The crystal structure of an NH2-terminal conserved domain (N-domain) comprising the first 123 residues of STAT-4 was determined at 1.45 angstroms. The domain consists of eight helices that are assembled into a hook-like structure. The N-domain has been implicated in several protein-protein interactions affecting transcription, and it enables dimerized STAT molecules to polymerize and to bind DNA cooperatively. The structure shows that N-domains can interact through an extensive interface formed by polar interactions across one face of the hook. Mutagenesis of an invariant tryptophan residue at the heart of this interface abolished cooperative DNA binding by the full-length protein in vitro and reduced the transcriptional response after cytokine stimulation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinkemeier, U -- Moarefi, I -- Darnell, J E Jr -- Kuriyan, J -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1048-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology and Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461439" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Interferon-gamma/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; *Protein Conformation ; Protein Structure, Tertiary ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Signal Transduction ; Trans-Activators/*chemistry/genetics/metabolism ; Transcription, Genetic ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-07-24
    Description: The transcription factor NFAT (nuclear factor of activated T cells) controls the expression of many immunomodulatory proteins. African swine fever virus inhibits proinflammatory cytokine expression in infected macrophages, and a viral protein A238L was found to display the activity of the immunosuppressive drug cyclosporin A by inhibiting NFAT-regulated gene transcription in vivo. This it does by binding the catalytic subunit of calcineurin and inhibiting calcineurin phosphatase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miskin, J E -- Abrams, C C -- Goatley, L C -- Dixon, L K -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):562-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Animal Health, Pirbright Laboratory, Pirbright, Surrey, GU24 0NF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677199" target="_blank"〉PubMed〈/a〉
    Keywords: African Swine Fever Virus/*physiology ; Amino Acid Sequence ; Animals ; Binding Sites ; Calcineurin/metabolism ; *Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cells, Cultured ; Cercopithecus aethiops ; Cyclosporine/pharmacology ; DNA-Binding Proteins/genetics/*metabolism ; Genes, Reporter ; Macrophages, Alveolar/*virology ; Molecular Sequence Data ; NF-kappa B/metabolism ; NFATC Transcription Factors ; *Nuclear Proteins ; Recombinant Proteins/metabolism ; Swine ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Vero Cells ; Viral Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...