ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (456)
  • Life and Medical Sciences  (416)
  • ASTROPHYSICS
  • 1995-1999  (841)
  • 1970-1974  (139)
Collection
Years
Year
  • 21
    Publication Date: 1996-03-08
    Description: Friedreich's ataxia (FRDA) is an autosomal recessive, degenerative disease that involves the central and peripheral nervous systems and the heart. A gene, X25, was identified in the critical region for the FRDA locus on chromosome 9q13. This gene encodes a 210-amino acid protein, frataxin, that has homologs in distant species such as Caenorhabditis elegans and yeast. A few FRDA patients were found to have point mutations in X25, but the majority were homozygous for an unstable GAA trinucleotide expansion in the first X25 intron.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campuzano, V -- Montermini, L -- Molto, M D -- Pianese, L -- Cossee, M -- Cavalcanti, F -- Monros, E -- Rodius, F -- Duclos, F -- Monticelli, A -- Zara, F -- Canizares, J -- Koutnikova, H -- Bidichandani, S I -- Gellera, C -- Brice, A -- Trouillas, P -- De Michele, G -- Filla, A -- De Frutos, R -- Palau, F -- Patel, P I -- Di Donato, S -- Mandel, J L -- Cocozza, S -- Koenig, M -- Pandolfo, M -- 722/Telethon/Italy -- NS34192/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1423-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department de Genetica, University of Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596916" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 9/*genetics ; DNA Primers ; Female ; Friedreich Ataxia/*genetics ; Genes, Recessive ; Heterozygote ; Humans ; *Introns ; *Iron-Binding Proteins ; Male ; Molecular Sequence Data ; Pedigree ; Point Mutation ; Polymerase Chain Reaction ; Proteins/chemistry/*genetics ; Sequence Alignment ; *Trinucleotide Repeats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1996-08-16
    Description: Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howard, A D -- Feighner, S D -- Cully, D F -- Arena, J P -- Liberator, P A -- Rosenblum, C I -- Hamelin, M -- Hreniuk, D L -- Palyha, O C -- Anderson, J -- Paress, P S -- Diaz, C -- Chou, M -- Liu, K K -- McKee, K K -- Pong, S S -- Chaung, L Y -- Elbrecht, A -- Dashkevicz, M -- Heavens, R -- Rigby, M -- Sirinathsinghji, D J -- Dean, D C -- Melillo, D G -- Patchett, A A -- Nargund, R -- Griffin, P R -- DeMartino, J A -- Gupta, S K -- Schaeffer, J M -- Smith, R G -- Van der Ploeg, L H -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688086" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; DNA, Complementary/genetics ; GTP-Binding Proteins/metabolism ; Growth Hormone/*secretion ; Hormones/*metabolism ; Humans ; Hypothalamus, Middle/chemistry ; Indoles/*metabolism/pharmacology ; Macaca mulatta ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Pituitary Gland/chemistry ; RNA, Complementary/genetics ; Rats ; Receptors, Cell Surface/analysis/chemistry/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Ghrelin ; Spiro Compounds/*metabolism/pharmacology ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1996-05-03
    Description: The vascular complications of diabetes mellitus have been correlated with enhanced activation of protein kinase C (PKC). LY333531, a specific inhibitor of the beta isoform of PKC, was synthesized and was shown to be a competitive reversible inhibitor of PKC beta 1 and beta 2, with a half-maximal inhibitory constant of approximately 5 nM; this value was one-fiftieth of that for other PKC isoenzymes and one-thousandth of that for non-PKC kinases. When administered orally, LY333531 ameliorated the glomerular filtration rate, albumin excretion rate, and retinal circulation in diabetic rats in a dose-responsive manner, in parallel with its inhibition of PKC activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishii, H -- Jirousek, M R -- Koya, D -- Takagi, C -- Xia, P -- Clermont, A -- Bursell, S E -- Kern, T S -- Ballas, L M -- Heath, W F -- Stramm, L E -- Feener, E P -- King, G L -- DK36836/DK/NIDDK NIH HHS/ -- EY05110-11/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1996 May 3;272(5262):728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614835" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Albuminuria/prevention & control ; Animals ; Diabetes Mellitus, Experimental/*complications/enzymology/physiopathology ; Diabetic Angiopathies/enzymology/etiology/*prevention & control ; Diglycerides/metabolism ; Dose-Response Relationship, Drug ; Enzyme Activation ; Enzyme Inhibitors/chemistry/*pharmacology ; Glomerular Filtration Rate/drug effects ; Humans ; Indoles/administration & dosage/chemistry/*pharmacology ; Isoenzymes/*antagonists & inhibitors/metabolism ; Kidney Glomerulus/metabolism ; Male ; Maleimides/administration & dosage/chemistry/*pharmacology ; Muscle, Smooth, Vascular/enzymology ; Phosphorylation/drug effects ; Protein Kinase C/*antagonists & inhibitors/metabolism ; Protein Kinase C beta ; Rats ; Rats, Sprague-Dawley ; Regional Blood Flow/drug effects ; Renal Plasma Flow/drug effects ; Retina/metabolism ; Retinal Vessels/physiopathology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1996-03-22
    Description: Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is an autosomal recessive inherited form of epilepsy, previously linked to human chromosome 21q22.3. The gene encoding cystatin B was shown to be localized to this region, and levels of messenger RNA encoded by this gene were found to be decreased in cells from affected individuals. Two mutations, a 3' splice site mutation and a stop codon mutation, were identified in the gene encoding cystatin B in EPM1 patients but were not present in unaffected individuals. These results provide evidence that mutations in the gene encoding cystatin B are responsible for the primary defect in patients with EPM1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennacchio, L A -- Lehesjoki, A E -- Stone, N E -- Willour, V L -- Virtaneva, K -- Miao, J -- D'Amato, E -- Ramirez, L -- Faham, M -- Koskiniemi, M -- Warrington, J A -- Norio, R -- de la Chapelle, A -- Cox, D R -- Myers, R M -- HD-24610/HD/NICHD NIH HHS/ -- IF32GM17502/GM/NIGMS NIH HHS/ -- P50 HG-00206/HG/NHGRI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Mar 22;271(5256):1731-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Standford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 21/*genetics ; Codon, Terminator/genetics ; Cystatin B ; Cystatins/chemistry/*genetics ; Cysteine Proteinase Inhibitors/chemistry/*genetics ; Epilepsies, Myoclonic/*genetics ; Female ; Finland ; Gene Expression ; Genes, Recessive ; Humans ; Introns/genetics ; Linkage Disequilibrium ; Male ; Molecular Sequence Data ; Pedigree ; Point Mutation ; Polymerase Chain Reaction ; RNA, Messenger/genetics/metabolism ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1997-02-07
    Description: Glial cell line-derived neurotrophic factor (GDNF) supports growth and survival of dopaminergic (DA) neurons. A replication-defective adenoviral (Ad) vector encoding human GDNF injected near the rat substantia nigra was found to protect DA neurons from the progressive degeneration induced by the neurotoxin 6-hydroxydopamine (6-OHDA) injected into the striatum. Ad GDNF gene therapy reduced loss of DA neurons approximately threefold 6 weeks after 6-OHDA lesion, as compared with no treatment or injection of Ad lacZ or Ad mGDNF (encoding a biologically inactive deletion mutant GDNF). These results suggest that Ad vector-mediated GDNF gene therapy may slow the DA neuronal cell loss in humans with Parkinson's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi-Lundberg, D L -- Lin, Q -- Chang, Y N -- Chiang, Y L -- Hay, C M -- Mohajeri, H -- Davidson, B L -- Bohn, M C -- NS31957/NS/NINDS NIH HHS/ -- T32AG00107/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 7;275(5301):838-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Anatomy, University of Rochester, Box 603, 601 Elmwood Avenue, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9012352" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics ; Animals ; Corpus Striatum/metabolism/pathology ; Dopamine/*physiology ; Gene Expression ; *Genetic Therapy ; Genetic Vectors ; Glial Cell Line-Derived Neurotrophic Factor ; Humans ; Male ; Molecular Sequence Data ; *Nerve Degeneration ; *Nerve Growth Factors ; Nerve Tissue Proteins/*genetics ; Neurons/pathology/physiology ; *Neuroprotective Agents ; Oxidopamine ; PC12 Cells ; Parkinson Disease/pathology/*therapy ; Rats ; Rats, Inbred F344 ; Substantia Nigra/metabolism/pathology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1996-11-15
    Description: Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting approximately 1 percent of the population over age 50. Recent studies have confirmed significant familial aggregation of PD and a large number of large multicase families have been documented. Genetic markers on chromosome 4q21-q23 were found to be linked to the PD phenotype in a large kindred with autosomal dominant PD, with a Zmax = 6.00 for marker D4S2380. This finding will facilitate identification of the gene and research on the pathogenesis of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polymeropoulos, M H -- Higgins, J J -- Golbe, L I -- Johnson, W G -- Ide, S E -- Di Iorio, G -- Sanges, G -- Stenroos, E S -- Pho, L T -- Schaffer, A A -- Lazzarini, A M -- Nussbaum, R L -- Duvoisin, R C -- New York, N.Y. -- Science. 1996 Nov 15;274(5290):1197-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetic Disease Research, National Center for Human Genome Research, National Institutes of Health, Bethesda, MD 20892-1430, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8895469" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Mapping ; *Chromosomes, Human, Pair 4 ; Female ; Genetic Linkage ; Genetic Markers ; Humans ; Lod Score ; Male ; Parkinson Disease/*genetics ; Pedigree ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1996-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, S L -- Rodrigo, A G -- Shankarappa, R -- Learn, G H -- Hsu, L -- Davidov, O -- Zhao, L P -- Mullins, J I -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):415-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8677432" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; DNA, Viral/genetics ; *Genetic Variation ; HIV/classification/*genetics ; Humans ; Leukocytes, Mononuclear/virology ; Polymerase Chain Reaction ; Probability ; Sample Size ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1996-07-26
    Description: The functional mimicry of a protein by an unrelated small molecule has been a formidable challenge. Now, however, the biological activity of a 166-residue hematopoietic growth hormone, erythropoietin (EPO), with its class 1 cytokine receptor has been mimicked by a 20-residue cyclic peptide unrelated in sequence to the natural ligand. The crystal structure at 2.8 A resolution of a complex of this agonist peptide with the extracellular domain of EPO receptor reveals that a peptide dimer induces an almost perfect twofold dimerization of the receptor. The dimer assembly differs from that of the human growth hormone (hGH) receptor complex and suggests that more than one mode of dimerization may be able to induce signal transduction and cell proliferation. The EPO receptor binding site, defined by peptide interaction, corresponds to the smaller functional epitope identified for hGH receptor. Similarly, the EPO mimetic peptide ligand can be considered as a minimal hormone, and suggests the design of nonpeptidic small molecule mimetics for EPO and other cytokines may indeed be achievable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Livnah, O -- Stura, E A -- Johnson, D L -- Middleton, S A -- Mulcahy, L S -- Wrighton, N C -- Dower, W J -- Jolliffe, L K -- Wilson, I A -- GM-49497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):464-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662530" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Drug Design ; Erythropoietin/*chemistry/*metabolism ; Growth Hormone/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Peptides, Cyclic/*chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Erythropoietin/*agonists/chemistry/metabolism ; Receptors, Somatotropin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1996-07-26
    Description: Random phage display peptide libraries and affinity selective methods were used to isolate small peptides that bind to and activate the receptor for the cytokine erythropoietin (EPO). In a panel of in vitro biological assays, the peptides act as full agonists and they can also stimulate erythropoiesis in mice. These agonists are represented by a 14- amino acid disulfide-bonded, cyclic peptide with the minimum consensus sequence YXCXXGPXTWXCXP, where X represents positions allowing occupation by several amino acids. The amino acid sequences of these peptides are not found in the primary sequence of EPO. The signaling pathways activated by these peptides appear to be identical to those induced by the natural ligand. This discovery may form the basis for the design of small molecule mimetics of EPO.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wrighton, N C -- Farrell, F X -- Chang, R -- Kashyap, A K -- Barbone, F P -- Mulcahy, L S -- Johnson, D L -- Barrett, R W -- Jolliffe, L K -- Dower, W J -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):458-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662529" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteriophages ; Cell Division/drug effects ; Cell Line ; Cloning, Molecular ; Erythropoiesis/drug effects ; Erythropoietin/chemistry/*metabolism/*pharmacology ; Humans ; Ligands ; Mice ; *Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Peptides, Cyclic/chemistry/*metabolism/*pharmacology ; Phosphorylation ; Protein Structure, Secondary ; Receptors, Erythropoietin/*agonists/chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Solubility ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1996-06-14
    Description: The basal cell nevus syndrome (BCNS) is characterized by developmental abnormalities and by the postnatal occurrence of cancers, especially basal cell carcinomas (BCCs), the most common human cancer. Heritable mutations in BCNS patients and a somatic mutation in a sporadic BCC were identified in a human homolog of the Drosophila patched (ptc) gene. The ptc gene encodes a transmembrane protein that in Drosophila acts in opposition to the Hedgehog signaling protein, controlling cell fates, patterning, and growth in numerous tissues. The human PTC gene appears to be crucial for proper embryonic development and for tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R L -- Rothman, A L -- Xie, J -- Goodrich, L V -- Bare, J W -- Bonifas, J M -- Quinn, A G -- Myers, R M -- Cox, D R -- Epstein, E H Jr -- Scott, M P -- AR3995/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1668-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658145" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Animals ; Basal Cell Nevus Syndrome/*genetics ; Base Sequence ; Cloning, Molecular ; DNA, Neoplasm ; Drosophila ; *Drosophila Proteins ; Female ; Frameshift Mutation ; *Genes, Tumor Suppressor ; Humans ; Insect Hormones/genetics ; Male ; Membrane Proteins/*genetics ; Middle Aged ; Molecular Sequence Data ; Polymerase Chain Reaction ; Polymorphism, Single-Stranded Conformational ; Protein Conformation ; Receptors, Cell Surface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...