ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (4)
  • 1995-1999  (4)
  • 1980-1984
  • 1960-1964
  • 1950-1954
  • 1935-1939
  • 1920-1924
  • 1
    Publication Date: 1997-08-15
    Description: A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, K D -- Tissenbaum, H A -- Liu, Y -- Ruvkun, G -- R01AG14161/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):942-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252323" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Amino Acid Sequence ; Animals ; Caenorhabditis elegans/chemistry/*genetics/growth & development/metabolism ; Caenorhabditis elegans Proteins ; Chromosome Mapping ; Conserved Sequence ; Energy Intake ; *Genes, Helminth ; Glucose/metabolism ; Humans ; Insulin/metabolism ; Larva/genetics/growth & development/metabolism ; Longevity/*genetics ; Molecular Sequence Data ; Mutation ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Receptor, IGF Type 1/chemistry/genetics ; Receptor, Insulin/chemistry/*genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-17
    Description: 13S condensin is a multisubunit protein complex essential for mitotic chromosome condensation in Xenopus egg extracts. Purified 13S condensin introduces positive supercoils into DNA in the presence of topoisomerase I and adenosine triphosphate in vitro. The supercoiling activity of 13Scondensin was regulated by mitosis-specific phosphorylation. Immunodepletion, in vitro phosphorylation, and peptide-mapping experiments indicated that Cdc2 is likely to be the kinase that phosphorylates and activates 13S condensin. Multiple Cdc2 phosphorylation sites are clustered in the carboxyl-terminal domain of the XCAP-D2 (Xenopus chromosome-associated polypeptide D2) subunit. These results suggest that phosphorylation of 13Scondensin by Cdc2 may trigger mitotic chromosome condensation in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, K -- Hirano, M -- Kobayashi, R -- Hirano, T -- CA45508/CA/NCI NIH HHS/ -- GM53926/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 16;282(5388):487-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Post Office Box 100, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9774278" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Chromosomes/chemistry/*metabolism ; DNA, Circular/chemistry/metabolism ; DNA, Superhelical/*chemistry ; DNA-Binding Proteins/chemistry/*metabolism ; Enzyme Activation ; Interphase ; *Mitosis ; Molecular Sequence Data ; Multiprotein Complexes ; Nucleic Acid Conformation ; Peptide Mapping ; Phosphorylation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-07-12
    Description: The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP.RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, K -- Ito, M -- Amano, M -- Chihara, K -- Fukata, Y -- Nakafuku, M -- Yamamori, B -- Feng, J -- Nakano, T -- Okawa, K -- Iwamatsu, A -- Kaibuchi, K -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-01, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662509" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/metabolism ; Amino Acid Sequence ; Animals ; Cattle ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Intracellular Signaling Peptides and Proteins ; Isopropyl Thiogalactoside/pharmacology ; Mice ; Molecular Sequence Data ; Muscle Contraction ; Muscle, Smooth/physiology ; Myosin Light Chains/metabolism ; Myosin-Light-Chain Phosphatase ; Oxazoles/pharmacology ; Phosphoprotein Phosphatases/*antagonists & inhibitors/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; rho-Associated Kinases ; rhoA GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-06-02
    Description: The substrate-specific protein chaperone Hsp90 (heat shock protein 90) from Saccharomyces cerevisiae functions in diverse signal transduction pathways. A mutation in YDJ1, a member of the DnaJ chaperone family, was recovered in a synthetic-lethal screen with Hsp90 mutants. In an otherwise wild-type background, the ydj1 mutation exerted strong and specific effects on three Hsp90 substrates, derepressing two (the estrogen and glucocorticoid receptors) and reducing the function of the third (the tyrosine kinase p60v-src). Analysis of one of these substrates, the glucocorticoid receptor, indicated that Ydj1 exerts its effects through physical interaction with Hsp90 substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, Y -- Yahara, I -- Lindquist, S -- New York, N.Y. -- Science. 1995 Jun 2;268(5215):1362-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7761857" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Fungal Proteins/genetics/*physiology ; HSP40 Heat-Shock Proteins ; HSP90 Heat-Shock Proteins/genetics/*physiology ; *Heat-Shock Proteins ; Molecular Chaperones/genetics/*physiology ; Molecular Sequence Data ; Oncogene Protein pp60(v-src)/metabolism ; Point Mutation ; Protein Conformation ; Receptors, Estrogen/metabolism ; Receptors, Glucocorticoid/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...