ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (342)
  • American Institute of Physics (AIP)  (342)
  • 2000-2004  (342)
  • Electrical Engineering, Measurement and Control Technology  (342)
Collection
  • Articles  (342)
Years
Year
Topic
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The 100 ns, 20 MA pinch-driver Z is surrounded by an extensive set of diagnostics. There are nine radial lines of sight set at 12° above horizontal and each of these may be equipped with up to five diagnostic ports. Instruments routinely fielded viewing the pinch from the side with these ports include x-ray diode arrays, photoconducting detector arrays, bolometers, transmission grating spectrometers, time-resolved x-ray pinhole cameras, x-ray crystal spectrometers, calorimeters, silicon photodiodes, and neutron detectors. A diagnostic package fielded on axis for viewing internal pinch radiation consists of nine lines of sight. This package accommodates virtually the same diagnostics as the radial ports. Other diagnostics not fielded on the axial or radial ports include current B-dot monitors, filtered x-ray scintillators coupled by fiber optics to streak cameras, streaked visible spectroscopy, velocity interferometric system for any reflector, bremsstrahlung cameras, and active shock breakout measurement of hohlraum temperature. The data acquisition system is capable of recording up to 500 channels and the data from each shot is available on the Internet. A major new diagnostic presently under construction is the BEAMLET backlighter. We will briefly describe each of these diagnostics and present some of the highest-quality data from them. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: X-ray backlighting is a powerful tool for diagnosing a large variety of high-density phenomena. Traditional area backlighting techniques used at Nova and Omega cannot be extended efficiently to National Ignition Facility scale. New, more efficient backlighting sources and techniques are required and have begun to show promising results. These include a backlit-pinhole point-projection technique, pinhole and slit arrays, distributed polychromatic sources, and picket-fence backlighters. In parallel, there have been developments in improving the data signal-to-noise and, hence, quality by switching from film to charge-coupled-device-based recording media and by removing the fixed-pattern noise of microchannel-plate-based cameras. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A 2.45 GHz electron cyclotron resonance (ECR) ion source with a single mode resonator is being developed to produce high efficient single charged ion beams from exiguous gaseous elements. The source is intended to produce short and long half-life radioactive ion beams as well as stable ion beams for low and high energy experiments at ISAC [J. M. Poutissou, Proceedings of the ISAC Workshop (1994)]. It is obvious that for the radioactive ion beam production, the gas and ion transient time and the overall ionization efficiency are the most important parameters. The transient time is measured using ultrafast peizoelectric gas valve which could operate up to a frequency of 2 kHz. A unique feature of the source is that the plasma chamber is considerably smaller (∼170 times) than its resonance cavity in order to minimize the transient time. Quartz tubes with various diameters (5–20 mm) and 80 mm long are tested as the plasma chamber and the results are discussed. The effect of the transfer tube length, which links the target and the ion source on the transient time is also described. An axially symmetric five electrode extraction system containing three multiaperture electrodes was used to extract the beam. The source, including ECR coils and extraction system is placed in the middle of a 60 cm×60 cm×90 cm vacuum box to simulate the ISAC target module conditions. The preliminary results of the molecular and ion transient time studies, beam efficiency studies are also presented in this article. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Charge exchange spectroscopy is one of the key ion diagnostics on the DIII-D tokamak. It allows measurement of impurity densities, toroidal and poloidal rotation speeds, ion temperatures, and the radial electric field. For the 2000 experimental campaign, we have replaced the intensified photodiode array detectors on the edge portion of the system with advanced charge-coupled device (CCD) detectors mounted on faster (f/4.7) Czerny–Turner spectrometers equipped with toroidal mirrors. The combination has improved the photoelectron signal level by about a factor of 20 and the signal to noise by a factor of 2–8, depending on the absolute signal level and readout mode. A major portion of the signal level improvement comes from the improved quantum efficiency of the back-illuminated, thinned CCD detector (70% to 85% quantum efficiency for the CCD versus 10% for the image intensifier) with the remainder coming from the faster spectrometer. The CCD camera also allows shorter minimum integration times: 0.33 ms while archiving to computer memory and 0.15 ms using temporary storage on the CCD chip. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Laser–plasma instabilities that produce an unacceptably high level of hot electrons are potentially dangerous for both direct-drive and indirect-drive inertial confinement laser fusion. The hot electrons preheat the fuel and prevent compression of the capsule to the requisite conditions for ignition. Fast electron generation and preheat can be inferred from the hard x-ray radiation generated by the interaction of the hot electrons with the target. On the University of Rochester's OMEGA laser system, time-resolved hard x-ray detectors have been operating in an energy range from 10 to 500 keV. In this article we will present initial results for the yield and spectrum of the hard x-ray radiation. The concept used on OMEGA can be easily extended to infer the amount of laser energy coupled to suprathermal electrons and to the target for both direct- and indirect-drive implosions on the upcoming National Ignition Facility, as well as to measure the conversion efficiency in high-x-ray-yield experiments. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 824-827 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Secondary deuterium–tritium (DT) neutrons from pure-deuterium inertial confinement fusion targets can be used to diagnose the fuel areal density. Single-hit detectors like LaNSA at Lawrence Livermore National Laboratory or MEDUSA at the Laboratory for Laser Energetics (LLE) saturate for fairly low secondary DT- and primary DD-neutron yields. These detectors are not suitable for the high-yield, direct-drive implosion experiments currently carried out on the 30 kJ, 60 beam OMEGA laser system or for future cryogenic-capsule experiments on OMEGA. The status of several current-mode detectors (e.g., a single scintillator and a photomultiplier tube) now being developed at LLE for secondary-neutron-yield measurements is described. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 4119-4126 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The design, construction and operation of a tomographic imaging system on the Compact Toroid Injection Experiment is described. The system measures the total radiated power over energies from visible light up into the extreme ultraviolet. It then reconstructs two dimensional profiles from the data. The reconstruction routine is based on a method known as second order regularization which finds a compromise between smoothness and fit to the data. This method was found to have the best overall fidelity to test images. The hardware and overall reconstruction were calibrated using two different sources. First results from the system under real experimental conditions are presented. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have used a large format (4000×4000) high resolution (9 μm pixels) charge coupled device (CCD) to record images from the rear of a gated micro-channel plate (MCP) intensifier, and compared the results with conventional film recording. Measurements of linearity, dynamic range, dark noise, and distortion all show that the CCD is a superior replacement for film. Furthermore, its excellent registration allows for easy flat fielding, using data from a uniformly exposed MCP. As we increase the signal level to where the signal to noise is not dominated by photon counting statistics, we find that this flat fielding procedure produces a significant improvement in signal to noise. The small spatial scale of this noise has led to its identification as high spatial frequency variations in the MCP phosphor. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: With the operation of successively more intense and powerful lasers, such as the NOVA petawatt laser with I∼3×1020 W/cm2, several novel (to laser physics) nuclear diagnostics were used to determine the nature of the laser/matter interaction at the target surface. A broad beam of hot electrons, whose centroid varied from shot to shot, width was remarkably constant, and intensity was about 40% of the incident laser energy was observed. New nuclear phenomenon included photonuclear reactions [e.g., (γ,xn)], photofission of 238U and intense beams of ions. Photonuclear reactions were observed and quantified in Cu, Ni, and Au samples, and produced activation products as neutron deficient as 191Au [a (γ,6n) reaction!], requiring gamma rays exceeding 50 MeV in energy. The spectral features of the gamma-ray source have been investigated by comparing activation ratios in Ni and Au samples, and angular distributions of higher energy photons have been measured with activation of spatially distributed Au samples. Extraordinarily intense beams of charged particles (primarily protons) were observed normal to the rear surface of the target and quantified using the charged particle reaction 48Ti(p,n)48V, radiochromic film and CR39 plastic track detectors. Approximately 3×1013 protons, with energies up to 55 MeV were observed in some experiments. Collimation of this beam increases with increasing proton energy. Correlations of activation with laser performance will be discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Initial laser-driven equation of state (EOS) experiments on liquid deuterium employed x-ray radiography to track the shock and particle speeds in the shock compressed sample. With the high pressures available with laser drivers we found that it is also possible to track the shock front directly with a velocity interferometer system for any reflector (VISAR) because the shock front reflects light across the visible spectrum with reflectance around 50% for shocks stronger than 50 GPa in liquid deuterium. We have observed similar reflectances in other dielectric samples, such as diamond, LiF, and water. The pressure required to produce a reflecting shock varies with each material. This phenomenon allows us to design impedance-matched EOS experiments using velocity interferometry to measure the propagation speed in the transparent shocked materials, and step breakout measurements to determine the speed in the pusher. In a different kind of experiment we have observed double shock compression in liquid deuterium by impacting a shock in liquid deuterium at a LiF anvil placed in the liquid sample. VISAR can be used to track the shock in the deuterium as well as the motion of the deuterium–LiF interface subsequent to impact. This allows us to diagnose double-shock states using the VISAR technique. As a final example VISAR can be used to track shock overtake events such as produced by shaped pulse compression or shock reverberation effects in the accelerating pusher. This capability is directly applicable to shock timing experiments needed to tune the drive pulse for inertial confinement fusion capsules on the National Ignition Facility. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...