ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-01-05
    Description: The recently released human genome sequences provide us with reference data to conduct comparative genomic research on primates, which will be important to understand what genetic information makes us human. Here we present a first-generation human-chimpanzee comparative genome map and its initial analysis. The map was constructed through paired alignment of 77,461 chimpanzee bacterial artificial chromosome end sequences with publicly available human genome sequences. We detected candidate positions, including two clusters on human chromosome 21 that suggest large, nonrandom regions of difference between the two genomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujiyama, Asao -- Watanabe, Hidemi -- Toyoda, Atsushi -- Taylor, Todd D -- Itoh, Takehiko -- Tsai, Shih-Feng -- Park, Hong-Seog -- Yaspo, Marie-Laure -- Lehrach, Hans -- Chen, Zhu -- Fu, Gang -- Saitou, Naruya -- Osoegawa, Kazutoyo -- de Jong, Pieter J -- Suto, Yumiko -- Hattori, Masahira -- Sakaki, Yoshiyuki -- New York, N.Y. -- Science. 2002 Jan 4;295(5552):131-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. afujiyam@gsc.riken.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Human, Pair 21/genetics ; Cloning, Molecular ; Contig Mapping ; Female ; Gene Library ; *Genome ; *Genome, Human ; Humans ; Male ; Pan troglodytes/*genetics ; *Physical Chromosome Mapping ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Tagged Sites ; X Chromosome/genetics ; Y Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-03-24
    Description: We constructed a bacterial artificial chromosome (BAC)-based physical map of chromosomes 2 and 3 of Drosophila melanogaster, which constitute 81% of the genome. Sequence tagged site (STS) content, restriction fingerprinting, and polytene chromosome in situ hybridization approaches were integrated to produce a map spanning the euchromatin. Three of five remaining gaps are in repeat-rich regions near the centromeres. A tiling path of clones spanning this map and STS maps of chromosomes X and 4 was sequenced to low coverage; the maps and tiling path sequence were used to support and verify the whole-genome sequence assembly, and tiling path BACs were used as templates in sequence finishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoskins, R A -- Nelson, C R -- Berman, B P -- Laverty, T R -- George, R A -- Ciesiolka, L -- Naeemuddin, M -- Arenson, A D -- Durbin, J -- David, R G -- Tabor, P E -- Bailey, M R -- DeShazo, D R -- Catanese, J -- Mammoser, A -- Osoegawa, K -- de Jong, P J -- Celniker, S E -- Gibbs, R A -- Rubin, G M -- Scherer, S E -- HG00750/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2271-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. hoskins@bdgp.lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731150" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centromere/genetics ; Chromatin/genetics ; Chromosomes, Bacterial/genetics ; Cloning, Molecular ; *Contig Mapping ; DNA Fingerprinting ; Drosophila melanogaster/*genetics ; Euchromatin ; Gene Library ; Genes, Insect ; Genetic Markers ; Genetic Vectors ; *Genome ; In Situ Hybridization ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; Sequence Analysis, DNA ; Sequence Tagged Sites ; Telomere/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, M S -- de Jong, W W -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1709-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Riverside, CA 92521 USA. springer@citrus.ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11253193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; DNA, Mitochondrial/genetics ; Genomics ; Humans ; Mammals/anatomy & histology/*classification/genetics ; Meta-Analysis as Topic ; Pedigree ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-12-18
    Description: Molecular phylogenetic studies have resolved placental mammals into four major groups, but have not established the full hierarchy of interordinal relationships, including the position of the root. The latter is critical for understanding the early biogeographic history of placentals. We investigated placental phylogeny using Bayesian and maximum-likelihood methods and a 16.4-kilobase molecular data set. Interordinal relationships are almost entirely resolved. The basal split is between Afrotheria and other placentals, at about 103 million years, and may be accounted for by the separation of South America and Africa in the Cretaceous. Crown-group Eutheria may have their most recent common ancestry in the Southern Hemisphere (Gondwana).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, W J -- Eizirik, E -- O'Brien, S J -- Madsen, O -- Scally, M -- Douady, C J -- Teeling, E -- Ryder, O A -- Stanhope, M J -- de Jong, W W -- Springer, M S -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2348-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743200" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Base Pairing ; *Bayes Theorem ; Biological Evolution ; Cell Nucleus/genetics ; Ecosystem ; Fossils ; Genes ; Genes, rRNA ; Likelihood Functions ; Mammals/*classification/*genetics ; Markov Chains ; Marsupialia/classification/genetics ; Mitochondria/genetics ; Monte Carlo Method ; *Phylogeny ; Placenta ; Probability ; Sequence Analysis, DNA ; South America
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-09-22
    Description: Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammel, H B -- Beebe, R F -- De Jong, E M -- Hansen, C J -- Howell, C D -- Ingersoll, A P -- Johnson, T V -- Limaye, S S -- Magalhaes, J A -- Pollack, J B -- Sromovsky, L A -- Suomi, V E -- Swift, C E -- New York, N.Y. -- Science. 1989 Sep 22;245(4924):1367-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17798743" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-12-15
    Description: Voyager 2 images of Neptune reveal a windy planet characterized by bright clouds of methane ice suspended in an exceptionally clear atmosphere above a lower deck of hydrogen sulfide or ammonia ices. Neptune's atmosphere is dominated by a large anticyclonic storm system that has been named the Great Dark Spot (GDS). About the same size as Earth in extent, the GDS bears both many similarities and some differences to the Great Red Spot of Jupiter. Neptune's zonal wind profile is remarkably similar to that of Uranus. Neptune has three major rings at radii of 42,000, 53,000, and 63,000 kilometers. The outer ring contains three higher density arc-like segments that were apparently responsible for most of the ground-based occultation events observed during the current decade. Like the rings of Uranus, the Neptune rings are composed of very dark material; unlike that of Uranus, the Neptune system is very dusty. Six new regular satellites were found, with dark surfaces and radii ranging from 200 to 25 kilometers. All lie inside the orbit of Triton and the inner four are located within the ring system. Triton is seen to be a differentiated body, with a radius of 1350 kilometers and a density of 2.1 grams per cubic centimeter; it exhibits clear evidence of early episodes of surface melting. A now rigid crust of what is probably water ice is overlain with a brilliant coating of nitrogen frost, slightly darkened and reddened with organic polymer material. Streaks of organic polymer suggest seasonal winds strong enough to move particles of micrometer size or larger, once they become airborne. At least two active plumes were seen, carrying dark material 8 kilometers above the surface before being transported downstream by high level winds. The plumes may be driven by solar heating and the subsequent violent vaporization of subsurface nitrogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, B A -- Soderblom, L A -- Banfield, D -- Barnet, C -- Basilevsky, A T -- Beebe, R F -- Bollinger, K -- Boyce, J M -- Brahic, A -- Briggs, G A -- Brown, R H -- Chyba, C -- Collins, S A -- Colvin, T -- Cook, A F 2nd -- Crisp, D -- Croft, S K -- Cruikshank, D -- Cuzzi, J N -- Danielson, G E -- Davies, M E -- De Jong, E -- Dones, L -- Godfrey, D -- Goguen, J -- Grenier, I -- Haemmerle, V R -- Hammel, H -- Hansen, C J -- Helfenstein, C P -- Howell, C -- Hunt, G E -- Ingersoll, A P -- Johnson, T V -- Kargel, J -- Kirk, R -- Kuehn, D I -- Limaye, S -- Masursky, H -- McEwen, A -- Morrison, D -- Owen, T -- Owen, W -- Pollack, J B -- Porco, C C -- Rages, K -- Rogers, P -- Rudy, D -- Sagan, C -- Schwartz, J -- Shoemaker, E M -- Showalter, M -- Sicardy, B -- Simonelli, D -- Spencer, J -- Sromovsky, L A -- Stoker, C -- Strom, R G -- Suomi, V E -- Synott, S P -- Terrile, R J -- Thomas, P -- Thompson, W R -- Verbiscer, A -- Veverka, J -- New York, N.Y. -- Science. 1989 Dec 15;246(4936):1422-49.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17755997" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-04-10
    Description: In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which molecular and supramolecular chirality communicate. It shows exceptional stereoselectivity upon aggregation of the molecules during gel formation with the solvent. This chirality is locked by photochemical switching, a process that is subsequently used to induce an inverted chiral supramolecular assembly as revealed by circular dichroism spectroscopy. The optical switching between different chiral aggregated states and the interplay of molecular and supramolecular chirality offer attractive new prospects for the development of molecular memory systems and smart functional materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Jong, Jaap J D -- Lucas, Linda N -- Kellogg, Richard M -- van Esch, Jan H -- Feringa, Ben L -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):278-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Organic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15073374" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dicke, Marcel -- van Loon, Joop J A -- de Jong, Peter W -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):618-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Entomology, Wageningen University, Post Office Box 8031, NL-6700 EH Wageningen, Netherlands. marcel.dicke@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286351" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Aldehyde-Lyases/genetics/metabolism ; Animals ; Biological Evolution ; Cytochrome P-450 Enzyme System/genetics/metabolism ; *Ecology ; *Ecosystem ; Gene Expression Regulation, Plant ; Gene Silencing ; *Genomics ; Genotype ; Insects/*physiology ; Intramolecular Oxidoreductases/genetics/metabolism ; Lipoxygenase/genetics/metabolism ; Phenotype ; Plants/genetics ; Signal Transduction ; Tobacco/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-06-26
    Description: The antigenic evolution of influenza A (H3N2) virus was quantified and visualized from its introduction into humans in 1968 to 2003. Although there was remarkable correspondence between antigenic and genetic evolution, significant differences were observed: Antigenic evolution was more punctuated than genetic evolution, and genetic change sometimes had a disproportionately large antigenic effect. The method readily allows monitoring of antigenic differences among vaccine and circulating strains and thus estimation of the effects of vaccination. Further, this approach offers a route to predicting the relative success of emerging strains, which could be achieved by quantifying the combined effects of population level immune escape and viral fitness on strain evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Derek J -- Lapedes, Alan S -- de Jong, Jan C -- Bestebroer, Theo M -- Rimmelzwaan, Guus F -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):371-6. Epub 2004 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. dsmith@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218094" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antigenic Variation ; *Evolution, Molecular ; *Genes, Viral ; Genetic Drift ; Genetic Variation ; Hemagglutination Inhibition Tests ; *Hemagglutinins, Viral/chemistry/genetics/immunology ; Humans ; Influenza A virus/*genetics/*immunology ; Influenza, Human/epidemiology/virology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Seasons ; Virology/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-09-28
    Description: We present the genomic sequence of Legionella pneumophila, the bacterial agent of Legionnaires' disease, a potentially fatal pneumonia acquired from aerosolized contaminated fresh water. The genome includes a 45-kilobase pair element that can exist in chromosomal and episomal forms, selective expansions of important gene families, genes for unexpected metabolic pathways, and previously unknown candidate virulence determinants. We highlight the genes that may account for Legionella's ability to survive in protozoa, mammalian macrophages, and inhospitable environmental niches and that may define new therapeutic targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chien, Minchen -- Morozova, Irina -- Shi, Shundi -- Sheng, Huitao -- Chen, Jing -- Gomez, Shawn M -- Asamani, Gifty -- Hill, Kendra -- Nuara, John -- Feder, Marc -- Rineer, Justin -- Greenberg, Joseph J -- Steshenko, Valeria -- Park, Samantha H -- Zhao, Baohui -- Teplitskaya, Elita -- Edwards, John R -- Pampou, Sergey -- Georghiou, Anthi -- Chou, I-Chun -- Iannuccilli, William -- Ulz, Michael E -- Kim, Dae H -- Geringer-Sameth, Alex -- Goldsberry, Curtis -- Morozov, Pavel -- Fischer, Stuart G -- Segal, Gil -- Qu, Xiaoyan -- Rzhetsky, Andrey -- Zhang, Peisen -- Cayanis, Eftihia -- De Jong, Pieter J -- Ju, Jingyue -- Kalachikov, Sergey -- Shuman, Howard A -- Russo, James J -- AI 23549/AI/NIAID NIH HHS/ -- U01 1 AI 4437/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 24;305(5692):1966-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15448271" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial ; Gene Transfer, Horizontal ; *Genome, Bacterial ; Legionella pneumophila/*genetics/pathogenicity/physiology ; Plasmids
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...