ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-03-24
    Description: We constructed a bacterial artificial chromosome (BAC)-based physical map of chromosomes 2 and 3 of Drosophila melanogaster, which constitute 81% of the genome. Sequence tagged site (STS) content, restriction fingerprinting, and polytene chromosome in situ hybridization approaches were integrated to produce a map spanning the euchromatin. Three of five remaining gaps are in repeat-rich regions near the centromeres. A tiling path of clones spanning this map and STS maps of chromosomes X and 4 was sequenced to low coverage; the maps and tiling path sequence were used to support and verify the whole-genome sequence assembly, and tiling path BACs were used as templates in sequence finishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoskins, R A -- Nelson, C R -- Berman, B P -- Laverty, T R -- George, R A -- Ciesiolka, L -- Naeemuddin, M -- Arenson, A D -- Durbin, J -- David, R G -- Tabor, P E -- Bailey, M R -- DeShazo, D R -- Catanese, J -- Mammoser, A -- Osoegawa, K -- de Jong, P J -- Celniker, S E -- Gibbs, R A -- Rubin, G M -- Scherer, S E -- HG00750/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2271-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. hoskins@bdgp.lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731150" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centromere/genetics ; Chromatin/genetics ; Chromosomes, Bacterial/genetics ; Cloning, Molecular ; *Contig Mapping ; DNA Fingerprinting ; Drosophila melanogaster/*genetics ; Euchromatin ; Gene Library ; Genes, Insect ; Genetic Markers ; Genetic Vectors ; *Genome ; In Situ Hybridization ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; Sequence Analysis, DNA ; Sequence Tagged Sites ; Telomere/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-03-25
    Description: The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, M D -- Celniker, S E -- Holt, R A -- Evans, C A -- Gocayne, J D -- Amanatides, P G -- Scherer, S E -- Li, P W -- Hoskins, R A -- Galle, R F -- George, R A -- Lewis, S E -- Richards, S -- Ashburner, M -- Henderson, S N -- Sutton, G G -- Wortman, J R -- Yandell, M D -- Zhang, Q -- Chen, L X -- Brandon, R C -- Rogers, Y H -- Blazej, R G -- Champe, M -- Pfeiffer, B D -- Wan, K H -- Doyle, C -- Baxter, E G -- Helt, G -- Nelson, C R -- Gabor, G L -- Abril, J F -- Agbayani, A -- An, H J -- Andrews-Pfannkoch, C -- Baldwin, D -- Ballew, R M -- Basu, A -- Baxendale, J -- Bayraktaroglu, L -- Beasley, E M -- Beeson, K Y -- Benos, P V -- Berman, B P -- Bhandari, D -- Bolshakov, S -- Borkova, D -- Botchan, M R -- Bouck, J -- Brokstein, P -- Brottier, P -- Burtis, K C -- Busam, D A -- Butler, H -- Cadieu, E -- Center, A -- Chandra, I -- Cherry, J M -- Cawley, S -- Dahlke, C -- Davenport, L B -- Davies, P -- de Pablos, B -- Delcher, A -- Deng, Z -- Mays, A D -- Dew, I -- Dietz, S M -- Dodson, K -- Doup, L E -- Downes, M -- Dugan-Rocha, S -- Dunkov, B C -- Dunn, P -- Durbin, K J -- Evangelista, C C -- Ferraz, C -- Ferriera, S -- Fleischmann, W -- Fosler, C -- Gabrielian, A E -- Garg, N S -- Gelbart, W M -- Glasser, K -- Glodek, A -- Gong, F -- Gorrell, J H -- Gu, Z -- Guan, P -- Harris, M -- Harris, N L -- Harvey, D -- Heiman, T J -- Hernandez, J R -- Houck, J -- Hostin, D -- Houston, K A -- Howland, T J -- Wei, M H -- Ibegwam, C -- Jalali, M -- Kalush, F -- Karpen, G H -- Ke, Z -- Kennison, J A -- Ketchum, K A -- Kimmel, B E -- Kodira, C D -- Kraft, C -- Kravitz, S -- Kulp, D -- Lai, Z -- Lasko, P -- Lei, Y -- Levitsky, A A -- Li, J -- Li, Z -- Liang, Y -- Lin, X -- Liu, X -- Mattei, B -- McIntosh, T C -- McLeod, M P -- McPherson, D -- Merkulov, G -- Milshina, N V -- Mobarry, C -- Morris, J -- Moshrefi, A -- Mount, S M -- Moy, M -- Murphy, B -- Murphy, L -- Muzny, D M -- Nelson, D L -- Nelson, D R -- Nelson, K A -- Nixon, K -- Nusskern, D R -- Pacleb, J M -- Palazzolo, M -- Pittman, G S -- Pan, S -- Pollard, J -- Puri, V -- Reese, M G -- Reinert, K -- Remington, K -- Saunders, R D -- Scheeler, F -- Shen, H -- Shue, B C -- Siden-Kiamos, I -- Simpson, M -- Skupski, M P -- Smith, T -- Spier, E -- Spradling, A C -- Stapleton, M -- Strong, R -- Sun, E -- Svirskas, R -- Tector, C -- Turner, R -- Venter, E -- Wang, A H -- Wang, X -- Wang, Z Y -- Wassarman, D A -- Weinstock, G M -- Weissenbach, J -- Williams, S M -- WoodageT -- Worley, K C -- Wu, D -- Yang, S -- Yao, Q A -- Ye, J -- Yeh, R F -- Zaveri, J S -- Zhan, M -- Zhang, G -- Zhao, Q -- Zheng, L -- Zheng, X H -- Zhong, F N -- Zhong, W -- Zhou, X -- Zhu, S -- Zhu, X -- Smith, H O -- Gibbs, R A -- Myers, E W -- Rubin, G M -- Venter, J C -- P50-HG00750/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2185-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/genetics ; Chromatin/genetics ; Cloning, Molecular ; Computational Biology ; Contig Mapping ; Cytochrome P-450 Enzyme System/genetics ; DNA Repair/genetics ; DNA Replication/genetics ; Drosophila melanogaster/*genetics/metabolism ; Euchromatin ; Gene Library ; Genes, Insect ; *Genome ; Heterochromatin/genetics ; Insect Proteins/chemistry/genetics/physiology ; Nuclear Proteins/genetics ; Protein Biosynthesis ; *Sequence Analysis, DNA ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-03-24
    Description: A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754258/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754258/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, G M -- Yandell, M D -- Wortman, J R -- Gabor Miklos, G L -- Nelson, C R -- Hariharan, I K -- Fortini, M E -- Li, P W -- Apweiler, R -- Fleischmann, W -- Cherry, J M -- Henikoff, S -- Skupski, M P -- Misra, S -- Ashburner, M -- Birney, E -- Boguski, M S -- Brody, T -- Brokstein, P -- Celniker, S E -- Chervitz, S A -- Coates, D -- Cravchik, A -- Gabrielian, A -- Galle, R F -- Gelbart, W M -- George, R A -- Goldstein, L S -- Gong, F -- Guan, P -- Harris, N L -- Hay, B A -- Hoskins, R A -- Li, J -- Li, Z -- Hynes, R O -- Jones, S J -- Kuehl, P M -- Lemaitre, B -- Littleton, J T -- Morrison, D K -- Mungall, C -- O'Farrell, P H -- Pickeral, O K -- Shue, C -- Vosshall, L B -- Zhang, J -- Zhao, Q -- Zheng, X H -- Lewis, S -- P4IHG00739/HG/NHGRI NIH HHS/ -- P50HG00750/HG/NHGRI NIH HHS/ -- R01 GM037193/GM/NIGMS NIH HHS/ -- R01 GM037193-14/GM/NIGMS NIH HHS/ -- R01 GM037193-15/GM/NIGMS NIH HHS/ -- R01 GM060988/GM/NIGMS NIH HHS/ -- R01 GM060988-01/GM/NIGMS NIH HHS/ -- R01 NS040296/NS/NINDS NIH HHS/ -- R01 NS040296-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2204-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, Berkeley Drosophila Genome Project, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731134" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/genetics ; Biological Evolution ; Caenorhabditis elegans/chemistry/*genetics/physiology ; Cell Adhesion/genetics ; Cell Cycle/genetics ; Drosophila melanogaster/chemistry/*genetics/physiology ; Fungal Proteins/chemistry/genetics ; Genes, Duplicate ; Genetic Diseases, Inborn/genetics ; Genetics, Medical ; *Genome ; Helminth Proteins/chemistry/genetics ; Humans ; Immunity/genetics ; Insect Proteins/chemistry/genetics ; Multigene Family ; Neoplasms/genetics ; Protein Structure, Tertiary ; *Proteome ; Saccharomyces cerevisiae/chemistry/*genetics/physiology ; Signal Transduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 71 (1967), S. 2775-2780 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 72 (1968), S. 765-766 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 71 (1967), S. 1118-1123 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 8 (1969), S. 779-786 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 30 (1981), S. 483-492 
    ISSN: 1573-5060
    Keywords: Radish ; Raphanus sativus ; classification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Fifty-five radish selections, comprising 39 named cultivars, were grown for classification based on morphological characteristics. The major characters used were the ratio of length to width of the hypocotyl, and the colour of the hypocotyl. Cultivars were further subdivided by the length of the longest leaf and the number of fully expanded leaves at harvest. The coefficient of variation is given for each cultivar. The classification identifies a total of 25 classes based on combinations of root shape and colour. These classes can then each be subdivided 25 times based on combinations of leaf length and leaf number.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 61 (1981), S. 485-488 
    ISSN: 1573-5036
    Keywords: N nutrition ; Peas ; P nutrition ; Seed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of nitrogen and phosphorus on seed yield and seed nutrient content inPisum sativum L. cv Sprite were studied. In the first experiment (spring-sown) seed yield was increased by 55% due to the combined effect of high nitrogen and phosphorus, although in subsequent experiments (during the summer) nitrogen had no effect on seed yield, and a response to phosphorus was obtained in only one of two experiments. In all experiments, increased plant nitrogen and phosphorus supply resulted in increased concentration of the respective element in the seed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 12 (1963), S. 341-345 
    ISSN: 1573-5060
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The breeding of autumn cauliflowers is difficult because the selected plants usually die in the field, or after transplanting under glass. A technique of vegetative propagation has been devised whereby selected curds are divided into portions which are then grafted on to root stocks of winter cauliflower raised in pots in the glass-house. Flowering shoots were produced four to eight weeks after grafting and up to two grams of seed was obtained from each curd portion. Seed for further breeding was obtained from 73% of the plants originally selected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...